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1. Introduction 

The brain is our most valuable and enigmatic organ. It comprises around 100 billion neurons, each generally 

possessing 10,000 connections that can reach up to one meter. Consequently, it constitutes a complex network 

that allows us to see the environment. The brain has approximately an equal number of glial cells as neurons, 

over 700 kilometers of blood vessels, the extracellular matrix, and is encased in clear cerebrospinal fluid, all 

of which collaboratively sustain the delicate environment of the neurons in a healthy condition. At the whole-

organ level, this is already exceedingly intricate; yet this is but a portion of the narrative. At each moment, 

several processes occur in the brain, including electrical impulses between neurons and the intricate chemical 

communication that facilitates homeostasis. Given the inherent micro-scale complexity of the brain, a natural 

methodology for comprehending its physiology and function is provided by homogenized, continuum-based 

modeling, which emphasizes the large-scale behavior resulting from the aggregation of small-scale 

contributions[1]. 

Notwithstanding the remarkable advancements in neuroscience study in recent decades, our comprehension 

of how the brain facilitates object and action recognition, learning, planning, and language utilization remains 

incomplete. An enhanced comprehension of cerebral function and cognition will facilitate the management 

of neurological and psychiatric disorders, while also enabling the creation of novel systems, gadgets, or robots 

that interact with people in a natural and cognitively compatible manner.  

This PhD thesis aims to explore the applications of brain signals in robotics applications, such as prosthetics 

or Robotic arm, Mobile Robots, and home system Automation. The research plan focuses on designing a 

Brain computer interface (BCI) that enhances the efficiency, cost effective and reliable control of actuators. 

The proposed BCI system contains several steps starting from EEG signal recordings, preprocessing, feature 

extractions and classification. And, at the end transform these signals into commands to control actuators. 

 

1.1. Background 

Brain-computer interface (BCI) is a communication method designed for identifying a subject's brain 

intentions and converting them into machine commands to regulate the functions of electromechanical 

devices[2]. Electroencephalography (EEG) may be the most prevalent noninvasive imaging technology in 

brain-computer interfaces (BCI). Due to the non-stationary character of EEG, typically resulting from 

variations in electrode impedance or positioning, as well as factors such as individuals' concentration, 

tiredness, eye movements, or muscle activity, EEG data demonstrate significant intra- and inter-subject 

variability. Therefore, a recorded EEG pattern from a subject may not be reproducible from the same person 

later or from several individuals undertaking the exact same task. 

1.2.Basis of Brain Computer interface.  

The reason for Brain-Computer Interface (BCI) technology is based on the necessity to establish direct 

communication channels between the human brain and external technologies[3]. Brain-Computer Interfaces 
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(BCIs) seek to circumvent conventional neuromuscular routes, enabling users to engage with computers only 

via cerebral impulses. This approach is especially beneficial for those with motor impairments, including 

those affected by paralysis, ALS, or other physical disabilities, who cannot utilize traditional input devices 

such as keyboards, mice, or touchscreens. The scientific reasoning is utilizing the brain's electrical activity, 

predominantly recorded by Electroencephalography (EEG), to understand and decode cognitive states, 

intents, or directives. Through the analysis and categorization of brain signals, BCIs facilitate the operation 

of assistive devices, prosthetic limbs, communication systems, or robotic arms, therefore improving the 

quality of life and autonomy for those with significant physical disabilities[4]. Furthermore, BCIs serve as 

an experimental framework for enhancing neuroscience and comprehending cerebral functioning, since they 

investigate the brain's encoding of movement goals, attention, and decision-making processes. The 

advancement of BCI technology serves not only to enhance human-machine connection but also to elucidate 

the intricacies of brain processing[5], promote advances in neural rehabilitation, and progress neurofeedback 

treatments. 

 

1.3. Research Objectives and scope 

      This PhD thesis aims to contribute to the field of BCI technology. In this work we investigate the 

implementation of BCI in robotic applications. The research objectives are to design a BCI system that 

collects the signals non-invasively from the brain, then apply different algorithms for preprocessing, 

feature extractions and classifications to convert the modified signals into commands to control actuators 

such as robotic and prosthetic arms, and wheeled robots. 

 

1.4. Hypotheses 

 

Hypothesis 1: Due to their simplicity and fewer health hazards, non-invasive BCIs are better for real-world 

robotic applications than invasive or semi-invasive technologies, notably in assistive robots for disabled 

users. 

Hypothesis 2: The utilization of wavelet transforms for feature extraction, in conjunction with Adaptive 

Neuro-Fuzzy Inference System (ANFIS) for classification, enhances the level of accuracy of EEG data 

analysis. The same can imply if Supervised Machine learning algorithms are used for classification. 

Hypothesis 3: Employing a Brain-Computer Interface (BCI) for controlling a 6 Degrees of Freedom (DOF) 

robotic arm that closely replicates human arm movements facilitates more intuitive and precise robotic 

control. 

Hypothesis 4: An innovative technique to control higher degrees of freedom in a robotic arm with less 

cognitive commands from the brain can improve usability and efficiency. This method enables the users 

to control a higher degree of freedom robotic arm using 4 mental commands only. 

Hypothesis 5: Using Brain-Computer Interface (BCI) technology for the control of mobile robots will 

facilitate efficient and effective robotic control.  
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1.5.Overview. 

In this research, a BCI system was designed in order to use mental commands from the brain in different 

Human-Robot applications. This proposal is expected to facilitate the complexity of controlling Robots using 

brain activities.  The Human-Machine application has been used for a long time. However, there is always a 

new method of implementing control that is developed every time. 

We have investigated how the BCI system worked and how it can be developed to be more efficient and have 

higher accuracy. This thesis is organized into 7 main chapters. Each chapter contributes to the understanding 

of the applications of BCI in human robot interaction applications. Chapter 2 offers a preliminary study that 

provides insights into the existing knowledge of BCI system and identify the research gap. Chapter 3 presents 

the methodology and the conceptual design of the BCI system. Chapter 4 contains the experimental work of 

each hypothesis. Chapter 5 presents the safety and security aspects of the BCI and why the chosen method of 

the signal recorded was selected. Chapter 6 identifies the results of each hypothesis. Chapter 7 discusses the 

results and what new scientific contributions have been made in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

2. Literature Review 

The application of brain signals in robotics is a swiftly evolving domain that investigates the utilization of 

brain-computer interfaces (BCIs) to provide direct communication between the human brain and robotic 

systems [6]. Researchers are exploring advanced techniques to convert mental directions into actionable inputs 

for robotic systems by using electrical brain activity through sensors such as electroencephalograms (EEGs). 

This method creates new opportunities in areas including assistive robotics, neuro-prosthetics, and human-

robot interaction, presenting possible advancements in improving mobility and autonomy for those with motor 

disabilities [7]. Applications of brain signals concentrate on deciphering diverse mental states such as 

intention, concentration, or imagined movement utilizing machine learning algorithms that translate these 

signals into orders for the operation of robotic arms, mobile robots, or exoskeletons [8]. This integration of 

neurology and robotics seeks to develop intuitive and adaptable systems that can respond to human intents 

instantaneously. To comprehend the breadth and possibilities of these breakthroughs, it is crucial to analyze 

fundamental research that explores the principal methodologies of signal gathering, feature extraction, 

classification methods, and integration with robotic platforms. These first experiments establish the foundation 

for creating resilient and adaptive brain-controlled robotic systems. 

 

2.1.EEG Signal recording. 

Electroencephalography (EEG) is an essential tool in brain-computer interface (BCI) research and several 

therapeutic applications [9], offering insights into cerebral activity by capturing electrical impulses produced 

by the brain. There are three main EEG recording techniques: invasive, semi-invasive, and non-invasive [10], 

each presenting distinct advantages, drawbacks, and uses.  

 

2.1.1. Invasive Method 

Invasive EEG, often known as intracranial EEG, is a technique in which electrodes are directly inserted into 

brain tissue or positioned on the brain's surface, behind the dura mater [11]. This method yields superior 

recordings, accurately capturing intricate brain activity with exceptional spatial and temporal resolution. 

Invasive EEG includes Depth electrodes implanted in targeted regions of the brain, specifically inside deep 

brain structures like the hippocampus. They are often used to observe regions that are less accessible to non-

invasive techniques and are essential in the management of disorders like epilepsy [12]. Depth electrodes are 

particularly advantageous in pre-surgical planning, since accurate localization of brain activity is crucial for 

focused intervention. 

 

2.1.1.1. Advantages and Limitations 

          Invasive EEG offers the most precise depiction of cerebral activity. The operation is significantly 

invasive, presenting hazards such as infection, inflammation, and possible long-term damage to cerebral 

tissue [13]. Thus, invasive EEG is often confined to clinical environments, where the advantages – such 

as seizure localization for epilepsy management – exceed the surgical hazards. 

 



5 

 

 

2.1.2. Semi Invasive Method 

            Semi-invasive EEG holds an intermediary position between invasive and non-invasive techniques. The 

electrodes are positioned inside the skull, external to the dura mater, enhancing signal quality compared 

to non-invasive methods while preventing direct contact with the brain [14]. Illustrations comprise: 

 

1- The subdural grid and strip electrodes are positioned between the skull and dura mater, providing 

mild invasiveness and superior signal quality relative to non-invasive methods. They are often 

used in pre-surgical assessments, especially for epilepsy patients, to identify brain areas associated 

with seizure activity. 

 

2- Epidural electrodes are situated above the dura mater and under the skull, making them somewhat 

less invasive than subdural electrodes. They provide sufficient spatial resolution while mitigating 

some dangers linked to direct brain contact. This strategy is sometimes used in research and is 

beneficial for prolonged observation in certain clinical scenarios. 

 

2.1.2.1.Advantages and Limitations of Semi-Invasive Method 

Semi-invasive EEG offers a suitable balance between invasiveness and signal fidelity. The electrodes, 

while not in direct touch with the brain, are positioned inside the skull, yielding sharper data than 

non-invasive methods. Semi-invasive techniques need surgical intervention, albeit they have a 

reduced risk compared to fully invasive procedures. This restricted use is often limited to situations, 

when accuracy is crucial, but a completely intrusive method is considered too hazardous. 

2.1.3. Non-Invasive 

             Non-invasive EEG is the predominant and extensively used technique owing to its safety, simplicity, 

and cost-effectiveness [15]. This method involves placing electrodes on the scalp to assess electrical 

activity across the skull. The prevalent configuration consists of a cap equipped with several 

electrodes (from 16 to 256), enabling multi-channel recording across various brain areas [16]. Non-

invasive electroencephalography techniques encompass: 

 

1- Scalp EEG: Conventional EEG entails the placement of electrodes at defined sites on the scalp, 

according to protocols such as the 10-20 system, which standardizes electrode positioning for uniform 

data acquisition. This approach is favored in clinical and research environments due to its accessibility 

and low danger. 

 

2- Dry and Wet Electrodes: Wet electrodes need conductive gel to enhance signal transmission, 

guaranteeing intimate contact between the skin and the electrode. Dry electrodes, which eliminate the 

need for gel, have gained popularity due to their ease and mobility, especially in consumer 
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applications. Despite generating more noise, new advancements have enhanced the reliability of dry 

electrodes[17]. 

 

 

2.1.3.1. Advantages and limitations of non-invasive methods 

            The advantages of non-invasive EEG include its great accessibility and safety, with applications in 

brain-computer interfaces, neuro-feedback, and consumer-grade devices for monitoring and relaxing. 

However, it also has limitations. Its principal restriction is diminished signal quality resulting from 

skull attenuation, which reduces spatial resolution and complicates the accurate localization of brain 

activity. Moreover, non-invasive EEG is susceptible to aberrations caused by ocular movements, 

muscular activity, and external electrical interference, which might compromise recordings [17].  

2.1.4. Comparison of EEG recording methods 

             Table (1) below compares each EEG recording method according to Application and other different 

aspects. 

 

Table (1) Methods of EEG recording 

 

 

 

 

 

 

 

 

 

 

 

 

 

Every EEG recording technique has unique benefits and drawbacks, depending upon the intended use and 

permissible risk thresholds. Invasive and semi-invasive procedures provide superior precision and are crucial 

in clinical environments where accuracy is vital, such as in the treatment of epilepsy. In contrast, non-invasive 

EEG is extensively used in research and consumer applications because of its safety and user-friendliness, 

however this comes at the expense of diminished signal quality. The advancement of sophisticated signal 

processing and electrode technology is enhancing the capabilities of non-invasive EEG, rendering it more 

applicable for intricate uses, such as real-time brain-computer interfaces and neuro-feedback systems. 

2.2.BCI applications. 

Method 
Level of 

Invasiveness 

Electrode 

location 

Quality 

of the 

signals 

Application 

Scope 
Risks 

Invasive High Brain Tissue High 
Clinical Epilepsy 

treatment 

Infection, 

Inflammation 

Semi-

Invasive 
Moderate 

Between 

skull and 

dura mater 

High to 

moderate 

Epilepsy 

Localization,  

Clinical 

Research 

Mild surgical 

risks 

 

Non-

Invasive 
Non 

Scalp 

Surface 
Moderate 

BCI 

neurofeedback, 

Consumer 

Devices 

Minimal 
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The integration of Brain-Computer Interface (BCI) technology with robotics and medical applications is an 

expanding focus within neuro-engineering, control systems, and biomedical engineering. This chapter 

examines the existing research environment, fundamental ideas, and technical advancements in BCI 

applications within robotics and illness diagnosis and treatment [18]. This review analyzes the main 

approaches, problems, and findings of current investigations, emphasizing the potential of BCI to transform 

assistive devices, robotic control, and diagnostic systems in healthcare. 

 

2.2.1. BCI in Robotics 

2.2.1.1. BCI and Assistive Robotic Devices 

The use of BCI in assistive robots has increased in response to the requirements of people with impairments. 

Brain-computer interfaces (BCIs) enable people to use robotic equipment, such as prosthetic limbs and 

exoskeletons [19], via the interpretation of neurological signals, presenting exciting opportunities for 

enhanced mobility and autonomy. Research demonstrates that BCI-controlled prosthetic arms, often using 

EEG-based non-invasive BCIs, may attain functionality that closely resembles natural limb motions. 

Significant advancements encompass: 

• Neuro-prosthetic Arms: These devices convert EEG-derived brain signals into accurate motor 

functions. Advanced systems use machine learning to enhance categorization precision and 

control dependability. Exoskeleton is a type of assistive robot that can be controlled by Brain 

signals. They proved to be a great help in assisting disabled people or in rehabilitation for people 

suffered from strokes, as the work of the teams in[20], [21], [22], [23], [24] show. 

• Six Degrees of Freedom (DOF) Robotic Arms: High-degree-of-freedom arms may be manipulated 

using a restricted array of cognitive instructions, facilitating streamlined but efficient control [25]. 

Innovative techniques have arisen to enhance command mapping for high degrees of freedom 

with less cognitive exertion [26]. 

2.2.1.2. Brain Controlled Wheeled Robots 

           Brain-controlled wheeled robots represent a distinct category of assistive equipment[27], specifically 

designed for those with mobility impairments. Utilizing BCIs for these applications necessitates 

advanced signal processing and real-time control techniques. Recent research illustrates the efficacy of 

wavelet transform-based feature extraction and adaptive neuro-fuzzy inference system (ANFIS) 

classification in attaining accurate robot control. Investigations in this domain concentrate on: 

• Advanced preprocessing and feature extraction approaches, including wavelet transformations, 

increase signal quality and improve classification accuracy [28]. 

• Classification using Machine Learning Models: Techniques such as Support Vector Machines 

(SVM) and neural networks have been used in conjunction with Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS) to enhance command accuracy, achieving performance levels of up to 90% 

accuracy. 
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2.2.2. BCI in disease inspection and treatment 

2.2.2.1.BCI for Diagnostic Applications 

BCI has shown promises in illness detection and diagnosis, especially in neurological conditions 

where non-invasive EEG offers insights into cerebral activity. BCI-based diagnostic systems have 

been used in the detection of epileptic seizures, the monitoring of neurodegenerative disorders, and 

the evaluation of cognitive deficits. 

 

• Seizure Detection Systems: EEG-based Brain-Computer Interfaces may be used for real-time seizure 

detection [29], facilitating early management for individuals with epilepsy [30]. Machine learning 

methodologies, including neural networks and deep learning, improve detection precision. 

• Assessment of Cognitive Impairment: BCI applications in evaluating cognitive functioning may assist in 

identifying illnesses such as Alzheimer’s disease and dementia [31], [32]. Non-invasive EEG equipment, 

when integrated with cognitive task assessments, has shown their efficacy as significant diagnostic 

indicators. 

2.2.2.2. BCI in neurological Rehabilitation 

Besides diagnostics, BCI is progressively used in the therapy and rehabilitation of people 

recuperating from stroke, spinal cord injuries [33], and other neuromuscular disabilities. 

Rehabilitation robotics, in conjunction with brain-computer interfaces (BCIs), enable patients to 

manipulate exoskeletons or functional electrical stimulation (FES) devices using their neural signals, 

therefore facilitating motor rehabilitation. 

• Stroke therapy: BCI-driven robots in stroke therapy enable patients to engage in regulated 

motor motions [34], therefore promoting neuroplasticity and facilitating motor recovery [35]. 

• Spinal Cord Injury Therapy: Brain-Computer Interface systems integrated with robotic 

exoskeletons provide paraplegic patients an assistance equipment for mobility training, 

improving their capacity to regain fundamental motor abilities [36]. 

2.2.2.3.BCI for Mental Health Applications 

Brain-computer interfaces are being investigated as instruments for the monitoring and treatment of 

mental health conditions. Neuro-feedback-based brain-computer interfaces (BCIs) are used to address 

anxiety, depression, and other mental health disorders by instructing users to modulate certain 

brainwave patterns linked to stress and relaxation. Research indicates that this method may provide 

enduring improvements in mental health. 

 

2.2.3. Challenges, Limitations and future Work in BCI Application 

Notwithstanding its prospective uses, BCI technology encounters several technological and ethical 

hurdles [37]. Constraints in signal capture, processing, and interpretation provide considerable 

challenges, particularly in real-time applications. Factors such as auditory interference, user 

weariness, and the variability of cerebral signals among people might influence the reliability of BCI 
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performance [38]. Moreover, ethical problems about data privacy and the autonomy of BCI users 

persist in influencing the development and implementation of these systems. Progress in machine 

learning, hardware downsizing, and signal processing has the capacity to substantially improve BCI 

applications in robotics and medical treatment [39]. Innovative technologies, including deep learning 

for signal analysis, tiny and wearable brain-computer interface systems, and connection with Internet 

of Things devices, have the potential to revolutionize the use of BCIs in healthcare and assistive 

technology. 

 

2.3.Conclusion 

The use of Brain-Computer Interface (BCI) technology in robotics and medical treatment represents a 

significant advancement towards individualized, responsive, and user-focused healthcare and assistive 

solutions. In robotics, brain-computer interfaces (BCIs) have empowered humans, particularly those 

with significant physical limitations, to operate robotic arms, exoskeletons, and wheeled robots using 

neural impulses [40]. This advancement has allowed the creation of assistive devices that provide 

improved mobility, autonomy, and quality of life, along with the possibility of personalized prostheses 

and highly articulated robotic limbs that closely mimic human motor capabilities. Researchers have 

enhanced the accuracy and dependability of brain-computer interfaces (BCIs) using sophisticated 

signal processing methods and machine learning algorithms, hence increasing their accessibility and 

efficacy for practical applications. In the field of illness diagnosis and treatment, BCIs have shown 

significant potential in diagnostics, rehabilitation, and mental health therapy. By enabling real-time 

observation of brain activity, BCIs facilitate the early identification of disorders such as epilepsy and 

cognitive decline, hence assisting in prompt treatments. For patients in rehabilitation for stroke, spinal 

cord injuries, or other neuromuscular disorders, BCI-driven robotic devices facilitate neuronal 

regeneration via regulated motor exercises and functional electrical stimulation. Moreover, BCI neuro-

feedback systems are shown efficacy in mental health interventions, assisting people in managing 

illnesses like anxiety and depression by self-regulation of brainwave patterns. 

Despite these encouraging developments, BCI technology continues to encounter several hurdles, 

including signal unpredictability, processing constraints, and ethical issues pertaining to privacy and 

autonomy. Non-invasive brain-computer interfaces (BCIs) provide a practical, safe, and efficient 

method for capturing electroencephalogram (EEG) data, making them an optimal selection for both 

research and application contexts. In contrast to invasive and semi-invasive techniques that need 

surgical implantation of electrodes, non-invasive BCIs use sensors positioned on the scalp, therefore 

mitigating the dangers associated with surgery, including infection and tissue damage. This 

accessibility facilitates wider and more adaptable applications, making them particularly appropriate 

for the development of assistive technology, neuro-rehabilitation tools, and diverse human-computer 

interactions. Non-invasive brain-computer interfaces have evolved significantly, with improvements 

in signal processing and machine learning facilitating precise capture and interpretation of cerebral 

activity [41]. Furthermore, non-invasive techniques provide prolonged and repeated use without health 
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hazards, which is crucial for applications in routine contexts such as prosthesis operation, wheelchair 

maneuvering, and robotic assistance devices. This method integrates safety, user-friendliness, and 

technical compatibility, making it the favored technique for capturing EEG data in several BCI 

applications. The literature reviews in the above the sections support Hypothesis 1: Due to their 

simplicity and fewer health hazards, non-invasive BCIs are better for real-world robotic applications 

than invasive or semi-invasive technologies, notably in assistive robots for disabled users.  
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3. EEG classification algorithms for better accuracy 

There are several different components that make up the human brain. These structures include the 

major cerebrum, the cerebellum, which is smaller, and the brain stem. From magnetic resonance (MR) 

imaging of the brain, these structures may be identified with relative ease (Figure 1). The cerebrum is 

made up of two hemispheres: the left and the right. These hemispheres are connected to one another 

by bundles of nerve fibers known as the corpus callosum connections. 

Glial cells and neurons, often known as nerve cells, are the two primary categories of cells that make 

up the brain. In most cases, a neuron is made up of a cell body, also known as the soma, a long nerve 

fiber, also known as the axon, and further branching extensions, known as dendrites. White matter and 

gray matter are the two basic forms of brain tissue matter that manifest themselves as a consequence 

of the spatial distribution of brain cells. Gray matter is characterized by the presence of neuronal cell 

bodies and glial cells, whereas white matter is mostly made up of bundles of axons that have been 

myelinated. 

Figure 1 (B) illustrates the distribution of white matter and gray matter in the cerebrum. It shows the 

white matter as well as the gray matter that is found in the cortical and subcortical regions of the 

nervous system. The sub-cortical gray matter is comprised of a number of significant structures or 

areas that are situated deep inside the brain. These include the thalamus, basal ganglia, and the 

hippocampus [1]. 
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                                                    Figure (1) MR images of human Brain 
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The brain is enclosed and shielded by three layers underneath the skull. Arachnoid mater, Dura mater, and 

pia mater. Based on how it functions, the human brain may be divided into three primary sections. The limbic 

system oversees emotions, the stem, or cerebellum, is in charge of essential bodily functions, and the cortex 

is in charge of processing and evaluating critical thought. The frontal, parietal, occipital, and temporal lobes 

are the four areas that make up the cortex. Major processes including critical thinking, memory storage, visual 

data processing, sensation, and movement are all controlled by these lobes. The neurophysiology theory states 

that synapses allow nerve cells to interact with one another. In terms of its functioning, the nervous system 

is divided into two parts: the peripheral nervous system (PNS) and the central nervous system (CNS). The 

PNS is made up of sensory neurons that link the body's many sensory receptors to the central nervous system 

(CNS), whereas the CNS is made up of the brain and spinal cords [1]. 

In addition, there are two types of cells in the nervous system: neurons, which may send electrical signals, and 

supportive glial cells, which carry out essential tasks. One particular kind of cell that differs from other types 

of cells is a neuron. Axons, cell body, and dendrites make up its three components. Cytoskeletal protein and 

ribosomes, which help in information processing and reception, are abundant in the dendrites. The 

postsynaptic specialization and the presynaptic terminal make up the synapse. The synaptic cleft, an 

extracellular gap between these two sections, is where neurotransmitter-mediated communication between 

neurons takes place. Following its passage through the cell body, the axon is in charge of interpreting the 

combined signals [42]. 

In the spinal cord, which is in charge of sending impulses to distant regions parts of the body, the axon length 

varies from a few microns to up to one meter [43]. As a result, in summary, the body processes signals, the 

axon transfers signals, and the dendrites receive information. The glial cells' primary job is to keep the neurons 

connected [44]. Nonetheless, they carry out crucial tasks such maintaining the brain's ionic equilibrium, 

promoting the healing process following a damage, and regulating the neurotransmitters in the synaptic clef. 

There are four different kinds of glial cells in the central nervous system: astrocytes, oligodendrocytes, 

microglia, and ependymal cells. Every one of these kinds serves a crucial purpose [45]. The chemical 

environment must be balanced by astrocytes in order to improve neuronal signaling. To facilitate quicker 

signal transport, oligodendrocytes in the central nervous system perform the same role as axons. Microglia 

helps clear damaged sites of cellular debris. The ependymal cells create cerebrospinal fluid. The action 

potential (AP) is the name given to the electrochemical signaling that occurs inside neurons [46]. 

Ion exchange across the neuron membrane is the cause of AP, which is a transient alteration in the membrane 

potential along the axon. Beginning in the cell body, the AP moves only in one direction. The definition of 

EEG signal is that it is the measurement of the flowing current during synaptic excitations of the dendrites of 

neurons in the cerebral cortex. The electrical dipoles between the body of the neuron and the dendrites create 

electrical potentials. The pumping of positive ions of Sodium 𝑁𝑎+, Potassium 𝐾+, calcium 𝐶𝑎+and the 

negative of chlorine 𝐶𝑙− causes the current in the brain, and this current generate a magnetic field over the 

scalp that is measurable by EEG system. There are five types of brain signals regarding the frequency ranges 
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[47]. These types are Gamma (>35Hz), Beta (12-35 Hz), Alpha (8-12Hz), Theta (4-8Hz) and Delta (0.5-4Hz). 

Each type of these signals is related to a specific Brain state as shown in Table 2. 

Table (2) Brain signal bands 

No. Brain Waves Frequency Hz Brain  Location Brain State 

1 Delta 0.5-4 Frontal Lobe Deep Sleep 

2 Theta 4-8 
Various depends 

on the state 

Light sleep, 

Meditation 

3 Alpha 8-12 Occipital lobe Relaxation 

4 Beta 13-35 
Distributed 

symmetrically 
Active thinking 

5 Gamma >35 
Somatosensory 

cortex 

High level cognitive 

function 

 

From Table 2, like sleeping or dreaming each band of EEG is generated in a specific state of the mind. 

Such as sleeping or relaxing etc. as it explained below: 

1. Delta Waves: These signals are generated in deep sleep, and they are usually very slow waves. 

2. Theta Waves: These signals are dreamy state, they are generated in sleep and Meditation.  

3. Alpha Waves: These signals are generated in the rest state of the mind. The waves are noticeable   

           when the eyes are closed. 

4. Beta Waves: These are generated when the person is active and conscious. The waves can be detected  

          during tasks that require significant attention. 

5.    Gamma Waves: The waves are used for advanced cognitive processing.  

 

The brain signals collected using the Emotive insight have noises and errors [48]. Therefore, the signals need 

to be preprocessed in order to prepare them for feature extraction that helps with the classification. From 

Table 2 the Delta and Theta bands are more likely dominant during the unconscious state of the mind, while 

the Gamma band is dominant in the hyperactive state. For this reason, this work deals with Alpha and Beta 

for robotic applications. 

3.1. Brain Signal Generation 

Neurons are building blocks of the neurons system [49]. It consists of the nucleus, axon and axon terminal 

(Figure 2). The human brain is made up of approximately 60 billion neurons. In a resting state the inside of 

the neuron is relatively more negative on the outside and this concept is important to realize. 
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                                                 Figure (2) Neuron 

The neurons communicate with each other through an electrochemical signal. Figure (3) shows the synapse. 

Synapse is the place where the neurons connect and communicate with each other. From Figure (3) the part 

before the synapse is called the presynaptic terminal or presynaptic neuron and the part after the synapse 

called the postsynaptic neuron [50]. The presynaptic neuron sends releases the neurotransmitters and they 

can create potentials on the postsynaptic neurons. This potential is excitatory signaling that leads to an 

increase in positive charges inside the postsynaptic neurons. It is called excitatory post synaptic potential 

EPSP. If the presynaptic neurons cause the postsynaptic neurons to become more negative from the inside. It 

is called Inhibitory Postsynaptic Potential IPSP. Beneath the surface of the scalp, lies the pyramidal neurons. 

These neurons arranged  

 

 

 

 

 

 

 

 

                                                                  Figure (3) Synapse 

perpendicular to cortical surface with the apical dendrites closer to the cortical surface. When there is an 

excitatory postsynaptic potential, there will be an increased positivity inside the cell. The intracellular 
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positivity leads to a relative increase of the negativity on the outside of the cell which is called the 

extracellular negativity [51]. The extracellular negativity on one end of the neuron leads to extracellular 

positivity on the other end of the neuron (the one that is close to the surface). In simple words the negative 

charge on one end leads to positive charge on the other end. The distant space between the end of the neuron 

the have the difference in charges between the positive and negative end is called the Dipole. The current 

flows from the positive end to the negative end (figure (4)). 

 

 

 

 

 

 

 

 

 

                                                               Figure (4) Neuron Potential 

If there is an IPSP inside the neurons (negative charge), this will cause a positive charge on the outside space 

of the cell. Positive charge on one end leads to negative charge on the other end, and the current will flow 

from positive side to the negative side. The continuous excitation and inhabitation of these neurons leads to 

change in the potential at the end of the neurons. This difference in potential for the neurons that are close to 

the surface of the scalp can be detected using the electrodes [52]as shown in figure (5).  
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 Figure (5) Brain Signals 

Electroencephalography (EEG) classification has become a fundamental technique in brain-computer 

interfaces (BCIs), revealing substantial promise across several domains, including neuroscience, medicine, 

and assistive robots. EEG signals, produced by cerebral neuronal activity, are intricate, high-dimensional, 

and susceptible to noise due to their vulnerability to artifacts from muscle movement, external disturbances, 

and intrinsic non-stationary properties [53]. This unpredictability is a significant difficulty for precise signal 

classification, as nuanced patterns in the EEG data must be consistently recovered to distinguish mental 

states, motor images, or cognitive directives. In light of these problems, the development of effective EEG 

classification algorithms that attain high accuracy has emerged as a primary priority in BCI research, since 

even little advances in classification accuracy can result in significant improvements in system efficiency and 

user experience. Recent improvements in signal processing and machine learning have facilitated the 

development of novel EEG classification methods that enhance accuracy [54]. A principal method is pre-

processing techniques, including band-pass filtering and artifact elimination, to enhance signal quality prior 

to classification. Feature extraction techniques such as Wavelet Transform, which encapsulate both temporal 

and spectral attributes of EEG data, have demonstrated potential in improving feature clarity and 

discriminability. Machine learning approaches, such as Adaptive Neuro-Fuzzy Inference Systems (ANFIS), 

neural networks (NN), and support vector machines (SVM), are utilized for effective categorization, each 

offering distinct advantages for the task. ANFIS utilizes fuzzy logic concepts to manage uncertainty and 

unpredictability in EEG data, whereas neural networks, particularly deep learning models, are proficient in 

recognizing intricate, non-linear patterns. Support Vector Machines (SVM), recognized for their effectiveness 

in high-dimensional environments, are a favored option for EEG classification, frequently achieving high 

accuracy with little overfitting. These strategies, utilized either independently or in conjunction, have shown 

remarkable enhancements in EEG classification accuracy, with current research indicating success rates over 

90%, a considerable advancement from earlier methods that frequently failed to surpass 65%. These 

developments have significant significance, especially in BCI applications designed to aid people with 

impairments via neuro-prosthetics or in the operation of assistive robotic equipment, where accurate and 

dependable signal interpretation is essential. 

 

 

3.2. DataSet 

In order to prove the second hypothesis, I used a dataset from a previous study. The data was made by [55] 

and the ethics board at the Chinese Academy of Science's Institute of Automation approved each trial. 
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Twenty-five healthy, right-handed people (19 men and 6 women) participated in the poll. The participants 

lacked knowledge of Mi-Based BCI. To completely comprehend the scenario, it is essential to discuss the 

technique used to record the signals. The individuals looked at the screen from a distance of one meter while 

sitting comfortably in a chair with their hands resting naturally on their knees. (Figure 6a). Each trial lasted 

eight seconds and started with a white circle in the center of the screen for two seconds, as seen in Figure 7. 

A red circle then flashed for a single second as a signal to assist people focus on the approaching goal. Before 

the desired reaction was needed, the "Hand" or "Elbow" cue was shown for four seconds. The participants 

were instructed to visualize carrying out the necessary action with their entire body, not just their eyes, during 

this time. The participants were told to think about anything they wished while relaxing their limbs.The 

subjects' right forearms and hands were used to record their EMGs. (Fig 6. 2b) to ensure they weren't 

operating independently (the EMG signals were eliminated during the EEG preprocessing). The 8s 

experiment and the fantasy were ultimately stopped by a "break" of 1s. During the interval, the patients were 

instructed to relax and reduce their muscle and eye movements. 

 

 
                                      Figure (6) Data Recording 

 

                                                                       Figure (7) Time for one Trial 

Event-related synchronization and desynchronization (ERS/ERD) are associated with alpha (8-13 Hz) and 

beta (14-30 Hz) motor-related activities. When the action is executed or envisioned, ERD manifests as a 

decrease in a certain frequency component associated with an increase in brain activity. An increase in a 
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particular frequency component result in increased frequency sensitivity, or ERS. Occasionally, it can be seen 

even in the absence of tangible action or intention, as it is associated with the suppression of brain activity. 

Recent study has identified a robust correlation between a particular brain area associated with sensory 

perception and the capacity to visualize the movement of certain body parts (as seen in Figure 8). The central 

dark blue region of the brain, as seen in the figure, governs limb motion. The pale cyan area is crucial for 

guiding hand movement. The region above the ears is responsible for the movement of the cheekbones and 

the lips. Motor imagery may induce event-related desynchronization (ERD) in the dominant hemisphere and 

event-related synchronization (ERS) in the non-dominant hemisphere. Figure 9 illustrates the intensity of brain 

frequency bands, shown in red. 

 

                                                       Figure (8) Region of motor imagery 



19 

 

 
Figure (9) ERD/ERS  

The conventional 10/20 System was employed to acquire EEG data at a sampling rate of 1000 Hz with a 

Neuroscan SynAmps2 amplifier and a 64-channel electrode cap. The left mastoid served as the reference 

point for the electroencephalogram (EEG) recordings. Electrode impedances were maintained below 10 kΩ 

during the testing.  

 

3.3. Problem Statement 

In the field of brain-computer interfaces (BCIs), precise classification of electroencephalogram (EEG) 

data is essential for efficient command of extraneous devices like mobile robots or robotic arms. The 

complicated and chaotic nature of EEG data makes it difficult for conventional approaches to achieve 

high classification accuracy. The practical uses of EEG-based control systems have been severely 

hampered by previous studies' low classification accuracies. The dataset has a low score of 

classification accuracy. The goal of the work is to use state-of-the-art machine learning and signal 

processing methods to improve the EEG signals' classification accuracy. In addition to proving the 

usefulness of new approaches, this enhancement would make EEG-based control systems more 

practical and dependable for use in autonomous robotic systems and prosthetics.  

 

3.4. Proposed Work  

            The data collected was processed using the EEGLAB toolbox (v14.1.1_b) within MATLAB (R2015a). 

During the preliminary phases of processing, we utilized a common average reference (CAR). A 40-

hertz low-pass filter and a 0.1-hertz high-pass filter were implemented. The input was down sampled 

to 200Hz to minimize processing expenses. Automatic artifact removal (AAR) was employed to 
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eliminate anomalies associated with ocular and muscular activity in the EEG. The dataset has already 

undergone preprocessing in [55] and was prepared for feature extraction. For feature extraction, the 

wavelet transform was used to accomplish it. 

 

3.5. Signal analysis 

The signals collected from the brain are subjected to noise and artifacts due to muscle movements or 

blinking. For that reason, they need to preprocess to get rid of those deformities.  The process starts 

with a signal preparation phase. This stage is essential since it involves removing a lot of noise and 

abnormalities from the data. It is necessary to extract the best features from the data and use feature 

selection to reduce the Dimension. The actual classification process is the final step. The steps in  this 

investigation are shown in Figure 10. 

 

Figure (10) Signal analysis stages 

 

 

3.5.1. Preprocessing 

Preprocessing is an essential first phase in the analysis of electroencephalography (EEG) signals, 

aimed at augmenting signal quality and enhancing the precision of subsequent tasks such as feature 

extraction and classification [56]. EEG signals, which record brain activity via electrical impulses on 

the scalp, are inherently intricate and susceptible to interference from several sources. Sources of 

noise, including ocular movements, muscular activity, and power line interference, can substantially 
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impair the quality of recorded EEG data, complicating the analysis and interpretation of the 

underlying brain signals. To precisely interpret brain activity, efficient preprocessing techniques must 

be employed to eliminate or reduce artifacts, guaranteeing that the signals analyzed are both pristine 

and reflective of authentic brain activity [57]. EEG preprocessing often encompasses many phases, 

each targeting distinct facets of signal quality. Standard procedures encompass filtering, wherein 

band-pass filters delineate pertinent frequency ranges, and artifact removal, utilizing techniques such 

as Independent Component Analysis (ICA) to segregate and eradicate extraneous signal sources. 

Baseline correction, signal normalization, and methods such as notch filtering enhance the data by 

diminishing the impact of extraneous noise, hence rendering the signals more appropriate for 

comprehensive analysis. These strategies together seek to reduce variability induced by 

environmental or physiological causes, hence improving the dependability of the processed signals. 

Preprocessing is crucial in brain-computer interfaces (BCI), cognitive neuroscience, and clinical 

diagnostics, as high-quality EEG data are vital for precise interpretation and decision-making. Recent 

improvements in preprocessing techniques, such as adaptive filtering and machine learning-based 

artifact rejection, provide novel solutions for addressing ongoing issues in EEG data quality.  

 

3.5.2. Feature Extraction 

Feature extraction in EEG signals denotes the identification and isolation of significant patterns or 

qualities within recorded brainwave data that are pertinent to a given task or study. EEG signals are 

intrinsically complex, comprising substantial raw data accompanied by noise and superfluous 

information [58]. The primary aim of feature extraction is to diminish complexity by pinpointing the 

most useful elements of EEG data applicable for classification, grouping, or control tasks.In the area 

of EEG signals, feature extraction approaches seek to emphasize particular attributes of the signals, 

including: 

 

1- Time-domain features: These characteristics are extracted directly from the EEG signal in the time 

domain, including mean, variance, skewness, kurtosis, peak amplitude, zero-crossing rate, and more 

metrics[59]. Time-domain features are valuable when the temporal characteristics of signals are 

important [60]. 

2- Frequency-domain features: These characteristics encapsulate the signal's frequency components 

using methodologies such as Fast Fourier Transform (FFT) or Power Spectral Density (PSD) analysis  

[59]. Frequency characteristics may represent power in designated frequency bands (such as delta, 

theta, alpha, beta, and gamma) or the peak frequencies within those bands. 

3-  Time-frequency features integrate both temporal and spectral information, often derived using 

techniques such as Short-Time Fourier Transform (STFT) or Wavelet Transform (WT). The Wavelet 

Transform is particularly favored for EEG feature extraction due to its capability to capture the non-

stationary characteristics of EEG data [61]. 
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4-  Spatial characteristics: These pertain to patterns seen across several EEG channels. Techniques such 

as Common Spatial Patterns (CSP) are employed to identify spatial filters that optimize the variation 

across classes [62]. 

5- Nonlinear features: These encompass metrics that reflect the complexity of EEG signals, including 

fractal dimensions, entropy (such as approximation entropy or sample entropy), Lyapunov exponents, 

and the Hurst exponent [63]. 

The extracted features serve as input for classification algorithms (such as neural networks, SVM, 

ANFIS, etc.) to discern various mental states, cognitive activities, or control commands derived from 

EEG data. Efficient feature extraction is essential since it dictates the efficacy of future analyses and 

control applications. 

 

3.5.2.1. Wavelet Transforms 

The wavelet transform is a method for analyzing non-stationary time-scale data, applicable to EEG 

recordings [64]. The ability to examine non-stationary signals and decompose them into discrete 

frequency components over many timeframes is highly advantageous. Utilizing WT, researchers may 

condense complex biological signals composed of several time-varying data sets into a digestible array 

of diagnostic criteria [65]. The continuous and discrete Wavelet transform formula are both given in 

equations (1) and (2). 

 𝑊𝑇𝑥(𝑎, 𝜏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓 ∗

(𝑡−𝜏)

𝑎
𝑑𝑡

∞

−∞
 ------(1) Continuous Wavelet transform 

 

Where a represents scale displacement, τ represents time displacement, and ψ is a wavelet basis 

function, including Hear, db.Series, Coiflet and so on. 

 

𝑊𝑇𝑥(𝑗, 𝑘) = ∫ 𝑥(𝑡)𝜓𝑗,𝑘
∗ (𝑡)𝑑𝑡 -------(2) Discrete Wavelet transform 

The Discrete Wavelet Transform (DWT) restricts the parameters a and τ of the wavelet basis function 

ψ(a,τ) to discrete values, representing the discretization of scale and translation [66]. Figure 11 

illustrates the decomposition of the discrete wavelet transform (DWT) of the EEG signal 𝑥(𝑛). The 

convolution, utilizing low-pass or high-pass filter coefficients, is a multiplication procedure involving 

two functions, which is then executed through its own sampling. To down-sample, one must halve the 

sample signal (reduction). Wavelet signals manifest in two forms: approximation and detail signals. A 

signal obtained from the convolution of the original signal with a low-pass filter serves as an 

approximation, whereas a signal derived from the convolution with a high-pass filter represents a detail. 

In Figure 11, each output generates a detailed signal D and an approximation signal A, with the latter 

functioning as the input for the subsequent phase. The major frequency component of the EEG signal 

dictates the number of levels in the wavelet decomposition. 
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                                                            Figure (11) Wavelet Decomposition 

 

Formula of WT and filter ℎ, is a low pass, can be formulated in the formulation as follows  

𝐻 (𝑧) 𝐻 (𝑧-1) + 𝐻 (-𝑧) 𝐻 (-𝑧-1) = 1         (3) 

In the above formula, 𝐻 (𝑧) is used to represent the h, z-transform filter and the complement transformation 

of this high-pass filter is expressed as: 

𝐺 (𝑧) = 𝑧𝐻 (-𝑧-1).                    (4) 

According to Section above, DWT is used to evaluate the spectrum components of EEG data. EEG signal 

analysis relies heavily on WT, specifically the careful selection of a wavelet and the optimal number of 

breakdown stages. The number of thresholds is calculated based on the primary frequency component of the 

EEG data. In order to classify signals, the levels are chosen such that the wavelet coefficients maintain a strong 

connection between the various parts of the signals and the requisite frequencies. The analysis was performed 

using five distinct degrees of decomposition. Therefore, the EEG data is segmented into D1-D5 details and a 

final method, A5. Multiple wavelet varieties are typically tested to find the most effective combination for a 

particular application. As a result of its Daubechies wavelet feature, second order (db2) filtering is more adept 

at detecting variations in the input signal. Therefore, wavelet coefficients were generated using db2 for this 

study [67]. For the Daubechies wavelet of the second order (db2), the band frequencies are as follows, with a    

sampling frequency of 256 Hz: D1 (64-128 Hz); D2 (32-64 Hz); D3 (16-32 Hz); D4 (8-16 Hz); D5 (4-8 Hz); 

and A5 (2-4 Hz). (0 - 4 Hz). To determine discrete wavelet values, MATLAB is used. Because even the most 

effective classifier will fail with a badly selected input feature, this is a crucial factor in the design of artificial 

neural networks based on pattern categorization. Determining the wavelet discontinuous coefficient provides 

a representation of the signal's energy across time and frequency. For this  reason, the discontinuous wavelet 

coefficient calculated from the EEG signal of each record serves as the feature vector used to characterize the 
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signal. The size of the recovered feature vector is reduced by using statistics on top of the collection of wavelet 

coefficients. The temporal frequency distribution of the signals under study is represented by the statistical 

characteristic listed below: 

• Means and standard deviation value. 

• Variance. 

• Skewness. 

• Kurtosis. 

• Root Mean Square. 

 

           The data needed for the right arm is collected from C3 channel. In order to retrieve the features for 

the EEG data prior to classification, code is developed in MATLAB for this wavelet. 

a) Means and  Standard Deviation Value 

            The definition of the mean is very simple as it is the sum of all the signals divided by the number of 

the signals [68]. 

𝜇 =
1

𝑁
∑ 𝑋𝑖

𝑁−1
𝑖=0  ------- (5) 

            The expression |𝑋𝑖 − 𝜇| indicates the difference between the deviation of the sample and their mean. 

The average deviation can be found by the sum of all the derivatives of the sample signals and dividing 

by the total number of samples. The standard deviation is similar, but the average is done by power 

instead of amplitude as shown in equation (6). 

𝜎 = √
1

𝑁−1
∑ (𝑥𝑖 − 𝜇)2𝑁−1

𝑖=0 ------- (6) 

b) Variance  

It is the variability measure. In order to determine the variance, the average cubed departure from the 

mean is used as the denominator. The extent of dispersion in a data collection can be better understood 

by examining its variance. Variance from the mean increases as data spreads out[69]. 

𝜎2 =
1

𝑁−1
∑ (𝑋(𝑖) − 𝜇)2𝑁−1

𝑖=0 -------(7) 

 

 

c) Skewness 

Skewness is a statistical measure of the degree to which a signal deviates from its mean value. To 

compute it, divide the cubed standard deviation by the cubed mean variation [70]. 

𝛾 =
1

(𝑁−1)𝜎3
∑ (𝑥𝑛 − 𝜇)3𝑁−1

𝑛=0 --------- (8) 

 

d) Kurtosis.  
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It is the Kurtosis of the signal that determines its Peakedness. More peaks in the waveform correspond 

to a greater kurtosis number [70]. 

𝐾 =
1

𝑁−1
∑ (𝑥𝑖

4)𝑁−1
𝑖=0

(
1

𝑁−1
∑ (𝑥𝑖

2)𝑁−1
𝑖=0 )2

 ------ (9) 

 

e) Root Mean Square. 

It is a quantitative representation of the signal's intensity. The signal's magnitude is determined using 

the root-mean-square formula. The strength is represented by the range [71]. The root-mean-square 

deviation provides a measure of the variability in the system's response to external factors. 

𝑅. 𝑀. 𝑆 = √
1

𝑁−1
∑ 𝑥𝑖

2𝑁−1
𝑖=0 ------ (10) 

Once the data had been cleaned up, the wavelet transform technique was used to pull out the most 

useful information. Subject one's characteristics are displayed in a, likelihood, quantile-quantile and 

histogram figure (a, b, and c, respectively, in Figure 12). The QQ diagram demonstrates that the 

feature data is normally distributed. 
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                                                                                C 

Figure (12 A,B,C) Probability, QQ plot and Histogram 

 

3.5.3. Classification 

The classification of EEG signals entails the categorization or labeling of various EEG data segments 

according to distinct mental states, cognitive processes, or environmental stimuli. The objective is to convert 

intricate brainwave patterns into significant classifications for diverse applications such as medical diagnosis, 

Brain-Computer Interfaces (BCIs), cognitive state assessment, or robotic control [72]. In this thesis, different 

algorithm used for the classification of EEG signals. 

3.5.3.1. ANFIS (Adaptive Neuro Fuzzy Inference System). 

The names "adaptive neuro-fuzzy inference system" (ANFIS) and "adaptive network-based fuzzy inference 

system" denote artificial neural networks based on the Takagi-Sugeno fuzzy inference system [73]. This 

method emerged in the early 1990s. By integrating components of neural networks with fuzzy logic, it may 

harness the advantages of both within a cohesive framework. It can learn and approximate nonlinear functions 

by a reasoning process akin to a series of IF-THEN fuzzy rules. Consequently, ANFIS is regarded as a global 

predictor. The ANFIS may be utilized more efficiently and effectively with the ideal configurations identified 

by a genetic algorithm. Potential applications encompass intelligent energy management systems with 

contextual awareness. The network architecture has two primary components: the foundation and the 

outcome [74]. The structure has five increasingly deeper levels. The first layer utilizes the input integers to 

select the appropriate membership functions. It is frequently termed the "fuzzyfication layer“. The 

membership degrees of each function are calculated using the parameter set {a, b, c}. The second level is 

responsible for generating the rule-based discharge rates. The second layer is tasked with generating the 

regulated discharge intensities. The second layer is referred to as the "rule layer" due to the regulations it 

encompasses. Fuzzyfication introduces an additional layer of complexity. Layer 4 seeks to normalize the 

projected firing strengths by dividing each value by the overall firing strength. The fifth layer receives the 

normalized data and the parameter set {p, q, r} as input. The output is sent utilizing the defuzzyfied values 

provided by this component. Figure 13. 

Following feature extraction from the EEG data, ANFIS was implemented using MATLAB code for this 

research. Subsequent to the incorporation of registration functionalities. The results for each subject were 

obtained utilizing the previously established FIS procedure. 

 



27 

 

 
Figure (13) ANFIS 

Figure 14 shows the Fuzzy inference system for the first subject and how the rules are based in order to 

collect the output.  

 

 

                                         Figure (14) Fuzzy set for subject 1. 

Figure 15 depicts the real result of the fuzzy system, which is the application of fuzzy principles to all the 

samples within each topic. The outcome changes with the characteristics chosen by WT transform, as 

demonstrated by the findings. Figure 16 displays the discrepancy between the real and ideal outputs. The 
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ANFIS algorithm produces results that are within a tolerable margin of error in comparison to the intended 

results. 

 

                                                               Figure (15) Fuzzy output 

 

 

                                  Figure (16) sub 1 Output 
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                     Table (3) Accuracy of ANFIS 

No Accuracy of ANFIS classification algorithm 

1 85.00% 14 91% 

2 95.30% 15 85% 

3 86.06% 16 93% 

4 96.40% 17 90% 

5 99% 18 87% 

6 80% 19 95% 

7 91% 20 80% 

8 88.10% 21 92% 

9 88% 22 95% 

10 80% 23 96% 

11 85% 24 95,00% 

12 90.30% 25 96% 

13 94%   

 

Figure 17 given below shows the accuracy achieved in this study compared to the results in[55]. Due to its 

superior performance compared to its predecessors, the algorithm is heavily relied upon for signal 

classification.  

 

                                                Figure (17) - Accuracy for Both Studies 
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3.5.4. Supervised Machine Learning 

Machine Learning (ML) algorithms are systems that can discern latent patterns in data, forecast 

outcomes, and enhance performance [75]. Various methods utilized in MI are illustrated in Figure 18. 

The picture illustrates three categories of algorithms: Supervised, Unsupervised, and Reinforcement 

Learning. 

 

                                                                Figure (18) Machine Learning Types 

Supervised Learning, as the term suggests, requires external supervision for the machine to acquire 

knowledge. Supervised learning models are taught using labeled datasets. Upon completion of training and 

processing, the model undergoes testing by supplying sample test data to evaluate its predictive accuracy. 

Supervised learning is categorized into classification and regression. Unsupervised learning is a method in 

which the computer learns from data without requiring external supervision [76]. The unsupervised model 

may be derived from an unlabeled dataset that is neither classed nor categorized, requiring the algorithm to 

operate on this data without supervision. The categories of unsupervised algorithms include Clustering and 

Association [77]. Reinforcement learning is a paradigm in which the agent engages with the environment 

through actions and acquires knowledge via feedback [78]. The primary concept of Supervised Machine 

Learning is the correlation between input and output data. To do this task, the algorithm is provided with 

training data. The training data comprises input-output pairs. Inputs are multidimensional vectors that 

encapsulate pertinent information on the signal states, specifically the brain signal states, or activities to be 

decoded. Raw data is often utilized to generate features, which are subsequently refined through feature 

engineering to discern the most promising or pertinent ones. Training encompasses the acquisition of the 

relationship between attributes and intended results. The response variable, or dependent variable, denotes 
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the output of interest associated with these characteristics, such as brain state or behavior. In the training 

phase, the model learns to correlate input features with target variables by optimizing its parameters, which 

is accomplished by minimizing a cost function [79]. The model's performance is represented by the loss or 

error assessed by the cost function. Numerous techniques exist that can reduce the cost function, with gradient 

descent being the most prevalent. An appropriate machine learning algorithm model comprises training and 

testing datasets. The testing set must not be assessed by the algorithm during the training phase. It must 

precisely represent the model's true environment. The outcomes of the testing sets should be comparable to 

those of the training sets. Figure 19 illustrates the machine learning architecture. 

 
         Figure (19) Architecture of Supervised Machine Learning 

There are several types of supervised machine learning. In this thesis, the Support vector machine and 

neural network were used. 

 

3.5.4.1.Support Vector machine (SVM). 

Support Vector Machine (SVM) is a robust and versatile supervised machine learning method mostly 

employed for classification tasks, while it may also be applied to regression. Its capability to manage 

both linear and non-linear data significantly enhances the performance of several challenging 

classification jobs [80]. Support Vector Machines (SVM) often identify the most suitable separating 

border, whether linear or hyperplane.  Support Vector Machine (SVM) identifies the hyperplane that 

maximizes the margin for a binary classification problem, signifying that it is the furthest distant from 

the nearest data points of each class. Support vectors, the nearest points, are crucial for defining the 

hyperplane [81]. 

3.5.4.2. Neural Network (N.N). 

A neural network designed for optimization or enhancement over time is termed a "optimizable neural 

network." The optimization of a neural network often aims to improve its efficacy in certain tasks, such as 
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predictive modeling, language processing, or picture recognition [82]. The following are essential principles 

pertaining to optimizable neural networks: 

1- The learning algorithm of an optimizable neural network is its most critical component. This method, 

often a variant of gradient descent, adjusts the network's weights based on input. The aim is to minimize 

the discrepancy, sometimes termed as the cost or loss, between the network's projected and actual 

outcomes. 

2- Backpropagation is a prevalent optimization method utilized in neural networks, especially within deep 

learning architectures. It is a method for rapidly computing the gradients of the loss function with respect 

to the network weights. The weights are subsequently adjusted utilizing this information to minimize the 

loss. 

3- Hyperparameters: These are the configurations or settings that govern the neural network's overall 

behavior but remain unchanged during the learning process. Examples include learning rate, batch size, 

and the number of network layers. Fine-tuning hyperparameters is a crucial step in optimizing neural 

networks. 

4- Overfitting occurs when a network becomes overly specialized to the training set, resulting in worse 

performance on new, untested data. Regularization techniques like dropout, weight decay, and early 

stopping mitigate overfitting, hence enhancing the network's generalizability and performance in real-

world applications. 

5- Data Preprocessing: The efficacy of the network can be significantly influenced by the method of data 

preparation and presentation. Normalization, standardization, and augmentation are strategies that enhance 

the efficacy and efficiency of network training. 

6- Transfer Learning: Employing a pre-trained model on a substantial dataset and subsequently fine-tuning 

it for a specific task is a prevalent technique utilized to improve neural networks. This method can yield 

significant performance improvements, especially when there is a scarcity of data for the specific task. 

7- Evolutionary Algorithms: Advanced approaches such as evolutionary algorithms are employed to 

optimize neural networks. These strategies iteratively improve network performance by generating a 

population of networks, selecting the highest-performing ones, and utilizing them to create a new 

generation of networks. 

8- Hardware Optimization: Finally, utilizing GPUs (Graphics Processing Units) or TPUs (Tensor Processing 

Units) for accelerated processing – a vital component in the efficient training of large networks – can also 

improve the performance of neural networks at the hardware level. 

The featured extracted in section 3.5.2.1 helps the classification algorithms to train in order to find a pattern 

that can predict the outcome for each trial. The data was labeled as 1 and 2 which represent if the subject 

imagined moving his elbow or wrist. Figures 20 and (21-22) show the SVM and NN algorithms 

respectively for the classifications. 
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Figure (20) SVM 

 

                                                        Figure (21) Neural network 1 



34 

 

 

                                                           Figure (22) Neural Network 2 

The figure shows the results for only one subject. Table 4 present all subjects results after applying the same 

signal processing, feature extraction and classifications.  

Table (4) Classification Accuracy 

Subject 

No. 

Accuracy Subject 

No. 

Accuracy 

 SVM      NN SVM NN 

1 90.00% 80.00% 14 85.00% 81.00% 

2 85.00% 84.00% 15 73.00% 86.00% 

3 85.00% 82.00% 16 78.00% 90.00% 

4 80.00% 80.00% 17 88.00% 85.00% 

5 84.00% 81.00% 18 84.00% 81.00% 

6 82.00% 82.50% 19 86.00% 83.00% 

7 75.00% 84.00% 20 91.00% 81.00% 

8 80.00% 83.00% 21 96.00% 81.00% 
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9 79.00% 84.00% 22 98.00% 81.00% 

10 76.00% 87.00% 23 85.00% 85.00% 

11 85.00% 80.00% 24 96.00% 82.00% 

12 80.00% 80.00% 25 82.00% 81.00% 

13 77.00% 80.00%    

Figure 23 shows the difference between the SVM, and NN results compared to the results shown in[83]. The 

improvement made in this study shows a good step up in classifying the signals. 

 

                                               Figure (23) Comparison of Results 

3.6. Conclusion 

The focus of this chapter is to identify a new method for EEG signal analysis to achieve higher accuracy. 

In this work, the study from [55]was chosen for the investigation. The following points were noted.  

1- Daubechies wavelet feature, 2nd order (db2) filtering is more adept at detecting variations in the input 

signal. Therefore, wavelet coefficients were generated using db2 for this study. 

2- fuzzy set theory is useful for addressing ambiguity and making choices. With the help of fuzzy logic, 

we were able to incorporate doubt into the classifier's architecture. The categorization of EEG data. 

When the wavelet coefficients of the EEG signals were used as inputs, the ANFIS algorithms were 

able to distinguish between two groups of EEG signals. Although it will take a long time to process, 

this can be overcome by using a computer with a high CPU process, the more characteristics pulled 
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from the data, the more efficient the program can be. When using the algorithm to control the motion 

of a mechanical arm, the varying results increase the likelihood that the arm will be moved by varying 

the pace at which the elbow and the wrist rotate. The ANFIS was assessed based on the classification 

outcomes and data metrics. The overall precision of the ANFIS model's classification was 90.13%. 

Indicating the algorithm's dependability and potential for further uses, the suggested ANFIS model can 

be used to classify EEG data. 

3- The identical approach was demonstrated using the Supervised Machine Learning algorithm for the 

classification accuracy of brain signals.  The results illustrate that the algorithms enhanced the 

categorization accuracy of the previous study, suggesting that the research was progressing appropriately. 

Attaining this level of accuracy facilitates the formulation of novel strategies for future enhancements in 

precision. Various methods exist for categorization; however, in our investigation, we utilized only two, 

as they yielded the most favorable outcomes. The results were derived from the characteristics retrieved.  

The findings of the two methods of classifications support Hypothesis 2 that indicates '' The utilization 

of wavelet transforms for feature extraction, in conjunction with Adaptive Neuro-Fuzzy Inference System 

(ANFIS) for classification, enhances the level of accuracy of EEG data analysis. The same can imply if 

Supervised Machine learning algorithms used for classification''. 
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4. Using BCI for Controlling Higher Degree of Freedom Robotic Arm 

The amputation of limbs significantly impacts the individual's everyday activities. Individuals with upper 

limb loss encounter difficulties in tasks such as tossing a ball, operating a vehicle, and engaging in 

handshakes. The concept of regulating actuators, including robotic and prosthetic limbs, mobile robots, 

automobiles, and bicycles [84]. The use of brain signals has advanced significantly during the past few 

decades. Nevertheless, more investigation remains to be conducted. The procedure has many stages. The 

initial step is to non-invasively record signals from the subject's brain. Secondly, it is necessary to 

preprocess these signals by eliminating any artifacts and noise to prepare them for the subsequent 

classification phase. Subsequently, we may utilize these signals to translate them into commands for 

actuators, contingent upon the specific applications in which they are employed. The Brain-Computer 

Interface (BCI) facilitates communication between the brain and computers by capturing electrical 

activity and connecting external devices. A Brain-Computer Interface (BCI) is a device that detects and 

collects electroencephalogram (EEG) signals generated by the brain and translates them into orders to 

execute a specific action for an externally linked device. The non-invasive technology is economically 

viable and possesses significant promise for many human-robot applications, including wheelchairs and 

prosthetics [85]. The concept of BCI involves gathering signals from the scalp, which are then 

transformed into a functional output. The microcontroller is controlled by this active function. The 

microprocessor assesses the incoming signals to ascertain the degrees of freedom, prompting the robotic 

arm to respond accordingly. The robot kinematic model pertains to the robot's mobility independent of 

the forces that generate it. As mentioned in chapter 3, the bands of EEG signals are classified in 5 types. 

For motor imagery, the Alpha and beta bands were used for robotic application. The system component 

can be seen in Figure 24. The figure shows the system component and bifunctional feature of each part 

of the system.  
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                                            Figure (24) system architecture. 

4.1. Brain Computer Interface. 

BCI is a device that makes direct connections between electrical activity from the brain and an 

external device [86]. For recording the signals, there are typically three methods. The invasive, semi-

invasive and non-invasive method as explained in chapter two. Due to the easement of installations 

and it does not require any incisions or stiches, the non-invasive method is used in this work. The 

device used in this work is Emotive Insight 2.0 with 5 channels. The device has 5 EEG sensors to 

detect brain activities and two reference (CML/DRL) sensors. One of the reference sensors is an active 

electrode (CML: Common Mode Sense) and the other is Passive electrode (DRL: Driven Right Leg).  
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                                           Figure (25) Electrode distribution of BCI on the scalp 

 

As shown in Figure 25 the yellow circles represent the location of the reference sensors, and the green circle 

represents the sensor locations, which are the frontal, temporal and parietal part of the head. Emotive insight 

provides a non-invasive solution for detecting brain signals. The device (as shown in Figure 26) detects a 

wide range of brain signals from three different parts of the brain, the Frontal lobe specifically from points 

(AF3) and (AF4), the Temporal lobe by points (T8) on the right and (T7) on the left and last the Parietal lobe 

from point (Pz). The device`s measurements are based on six keys: focus, Stress, Excitement, Relaxation, 

interest, and engagement [87]. The Emotive Insight software is an open-source software that can be 

downloaded from the Emotive website. There are several versions of the software, each one is used for 

different applications. Emotive BCI is the one that is used in this work. The Emotive BCI is a desktop 

application. It can be used in both Mac and Windows. The Emotive BCI allows the user to view and train the  

brain. The data streams for the Emotive BCI are classified in four categories: Mental Commands, 

Performance Metrics, Facial Commands and Motion sensors.  
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• Mental Commands: the software allows the user to train the brain based on commands such as Push, Pull, 

move right, Move left…. etc. 

• Facial Expression: the software can trigger events based on facial expression. It records the brain signals 

based on smile, blink, wink …. etc. 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 Emotive Insight BCI. 

The EEG signals are passing through a few stages of preprocessing. Firstly, the data is processed to remove 

sharp spikes. And then passed to a high pass filter to remove the DC offset and slow drift. The Emotive 

insight uses 2-second epochs and applies a Hanning-filter before performing the FFT. The POWER is 

calculated from the square of the amplitude in each frequency bin and output as uV2/ Hz. 

The emotive software has the option of displaying all the signals detected from the brain. The brain data is 

recorded from five points (as the device used is emotive insight 5 channels). Figure 27 shows the Emotive 

software. 
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                                                                 Figure (27) Emotive Software. 

The data sampling of Emotive Insight is 128 HZ with 16-bit resolution. The value of these data is affected 

by the different thoughts of the person. The emotive software also has the ability to train the brain to do some 

mental commands like: Push, Pull, move left, right etc. as shown in Figure 28. 



42 

 

 

                                                             Figure (28) Mental Command  

It also can record the signals of the brain due to facial expressions such as: smile, Blink, Wink left and right 

etc. (Figure 29). These records are useful to use for further applications in moving mobile robots or 

controlling multi degree of freedom robotic arms. 

 

Figure (29) Facial Expressions 
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4.2. Robotic Arm 

The 6 DOF robotic arm has a wide range of applications in industry or for personal use as it is the 

closest to the human arm. The Degree of Freedom (DOF) refers to the number of independent 

movements the robot arm can make [88]. A 3DOF robot arm can move up, down, right, left, in and 

out. The more Degree of freedom the arm has the wider range of motions it can perform. The 6 DOF 

robotic arm can perform three linear motions (forward/back, right/left, up and down) and three 

rotational movements (tilting, twisting and rotating the arm itself) [89]. 

This allows for a great precise and complex manipulation, mimicking the flexibility of the human arm. 

One of the most important steps for controlling robot manipulator is to implement the complete and 

accurate system`s mathematical model. The arm basically is a series of manipulators with revolute 

joints. The geometric configuration of the arm is made up of base, shoulder, elbow, and wrist. Figure 

(30) shows the robotic arm in correspondence to human arm model. Each joint except the wrist has a 

1 DOF. The wrist has 2 DOF as it can move vertically and rotationally. Each DOF in the arm is actuated 

by a servomotor. The end-effector is a two-finger gripper. Each joint is connected to a servo motor that 

allows the joint to perform two movements. 6 servo motors lead to 12 movements for the arm. The 

combination of brain thoughts enables the arm to perform complex motions such as Pick and Place. 

 

 
                                                       Figure (30) Robotic/Human Arm Model 

4.2.1. Forward Kinematic Model. 
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The kinematic model in this work is achieved using Denavit-Hartenberg (DH) parameter. Figure 31 

presents the kinematic model of the robotic arm in L position. The Base, shoulder and elbow are 

moving the tool point to its desired position, the orientation of the end-effector is implemented by the 

wrist joints. DH works with twist angle 𝛼𝑖−1, link length 𝑎𝑖−1, link offset 𝑑𝑖  and joint angle 𝜃𝑖{ 

𝛼𝑖−1, 𝑎𝑖−1, 𝑑𝑖 , 𝜃𝑖}[90]. 

As shown in Figure 31 a coordinate system is attached to each link of the manipulator. Table 5 lists the 

DH parameter of the robotic arm. The derivation of the links (joint expressed as 𝑖 in its previous 

neighboring joint 𝑖 − 1 was derived and presented in Equation (1) which represents the overall matrix 

of the end-effector to the base of the robotic arm. 

 

 

                                                      Figure (32) Kinematic Model 
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                   Table (5) DH parameter of Robotic arm 

Symbols 
Joints 

1 2 3 4 5 6 

𝜶𝒊−1 0 -90 0 0 -90 0 

𝒂𝒊−1 0 0 𝑳2 𝑳3 0 0 

𝒅𝒊 𝑳1 0 0 0 0 𝑳4 

𝜽𝒊 𝜽1 
𝜽2

− 90 
𝜽3 𝜽4 𝜽5 0 

𝑇 =6
0 [

𝐶1𝐶5𝑆234 + 𝑆1𝑆5 −𝐶1𝑆234𝑆5 + 𝐶1𝐶234 𝐶1𝐶234 𝐶1𝐴
−𝑆1𝐶5𝐶234 − 𝐶1𝑆5 𝑆1𝐶234𝐶5 + 𝐶1𝐶5  𝑆1𝐶234  𝑆1𝐴

𝐶234𝐶5 −𝐶234𝑆5 −𝑆234 𝐵  𝑆1𝐴
0 0 0 1

]                               (1) 

where 

𝐴 = 𝐿2𝑆2 + 𝐿3𝑆23 + 𝐿4𝐶234 

         𝐵 = 𝐿1 + 𝐿2𝐶2 + 𝐿3𝐶23 − 𝐿4𝑆234 

From equation (1), the 3*3 matrix (the first three rows and first three columns) is the rotation matrix. The last 

column represents the position (x, y, z) of the end-effector with respect to the base.  

4.1.1. Inverse kinematic Model. 

In practical robotic systems, inverse kinematics have more potential applications. With inverse 

kinematics, the computation of the joint angle required for achieving the required position and 

orientation can be calculated [90]. In inverse kinematic, the joint angles (𝜃1, 𝜃2, 𝜃3, 𝜃4) must be 

calculated, while 𝜃5 is directly given by the desired orientation for object manipulation. 

The transformation matrix from the tool to base is given by: 

𝑇𝑇𝑜𝑜𝑙
𝐵𝑎𝑠𝑒 = [

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑝𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑝𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑝𝑧

0 0 0 1

].              (2) 

 

The first 3*3 matrix represents the rotation, and the last column represents the translation of the 

end-effector with respect to the base.  

𝜃1 = 𝐴𝑡𝑎𝑛2(𝑝𝑥, 𝑝𝑦)               (3) 

𝑠234 = 𝑐1𝑎𝑥 + 𝑠1𝑎𝑦                (4) 

𝑐234 = 𝑎𝑧                (5) 
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𝜃234 = 𝐴𝑡𝑎𝑛2(𝑠234, 𝑐234)              (6) 

𝑐3 =
(𝑐1𝑝𝑥+𝑠1𝑝𝑦+𝑙4𝑠234)2+(𝑝𝑧−𝑙1+𝑙4𝑐234 ) −𝑙2

2−𝑙3
2

2𝑙2𝑙3
 (7) 

𝑠3 = ∓√1 − 𝑐3
2               (8) 

𝜃3 = 𝐴𝑡𝑎𝑛2(𝑠3 , 𝑐3)               (9) 

𝑐2 =
(𝑐1𝑝𝑥+𝑠1𝑝𝑦+𝑙4𝑠234)(𝑐3𝑙3+𝑙2)−(𝑝𝑧−𝑙1+𝑙4𝑐234)𝑠3𝑙3

(𝑐3𝑙3+𝑙2)2+𝑠3
2  𝑙3

2 (10) 

𝑠2 =
(𝑐1𝑝𝑥+𝑠1𝑝𝑦+𝑙4𝑠234)(𝑠3𝑙3)−(𝑝𝑧−𝑙1+𝑙4𝑐234 )(𝑐3𝑙3+𝑙2)

(𝑐3𝑙3+𝑙2)2+𝑠3
2  𝑙3

2 (11) 

𝜃3 = 𝐴𝑡𝑎𝑛2(𝑠2 , 𝑐2)             (12) 

𝜃4 =  𝜃234 − 𝜃2 − 𝜃3             (13) 

 

4.2. Experimental work (controlling the robotic arm). 

The experiment implemented in two conditions, the first one is quiet environment and the second is 

noisy environment (such as two people were talking next to the subject). The system consists of three 

different software working together. The Emotive software (for Emotive BCI), the Arduino UNO 

software and the HITI brain software that combines the two previous software together. The HITI 

brain is software that can make communication between Arduino board and Emotive EEG headset 

very easy. It allows the Arduino to receive mental commands from Emotive insight headset. Figure 33 

shows the system block diagram.  
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                                                                  Figure (33) The System Block Diagram 

The target movement in this work is as follows: 

1- Test all the movement using the mental commands separately. 

2- Make the full pick and place by combining different mental commands. 

As mentioned earlier, the 6 DOF robotic arm is very close to the human arm. The work of the robotic arm is 

more important than the outside shape of the robotic arm. Therefore, the main aim in this work is the actuators 

that move the robot links together (aka. The servo motors). The Arduino code defines the motors work and 

posterization of which motor work is defined in the code according to the mental commands. Figure 34 shows 

the flowchart of the system working. The actuators’ movement is based on the predicted category. The three-

software cooperating between each other in order to make a language that the robots understand. The BCI 

read the signals using the electrodes connected to the cortex, then transfer the signal to the Emotive software 

for recording and further process for noise reduction and classification. The Arduino UNO has the codes for 

controlling the actuator and implementing the path in the robotic arm workspace. The HITI brain software 

connects the Arduino code and the Emotive software, executes the code with the database from the emotive 

software, and transforms it into actual motion to the connected arm. The software working principle is building 

a GUI to control the actuators according to the code written in Arduino IDE. It’s important to mention that the 

subject needs to be trained before the final test. The emotive software has a training feature through a designed 
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experiment. The subject sits in a relaxed position in front of the screen. A cube in the center of the screen 

appears and the subject needs to imagine moving it forward, backward, right, left, up and down. This 

experiment is important for two reasons. First, is to sharpen the brain to produce the same pattern of signals 

for each movement. Secondly, store these signals for referencing and compare them with the real time signals 

in the final test, so the HITI brain can command the Robot arm to move according to the mental command 

with the help of the Arduino code. 
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Figure (34) The System Flowchart 
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The servo motor is controlled by a pulse width modulated signal [91]. The Arduino sends a pulse of 1mS and 

2mS long every 20ms to the servo motor. Figure 35 shows the servo signal. 

 

                                                              Figure (35) Servo Signal 

The servo motor rotates the shafts to the central position during the 1ms pulse. Several pulses rotate the 

motor enough to move the links to the desired location. The servo library in Arduino generates the necessary 

PWM signals to send it to the servo. During Motor imagery (imagining movement without actual physical 

motion), a distinct pattern is shown in the EEG signals in the Alpha and Beta bands. These patterns play a 

great role in decoding mental commands to control the robotic arm or other devices. In the state of motor 

imagery task, the Alpha power tends to decrease in the sensorimotor cortex. This is called Event-Related 

Desynchronization (ERD). The Brain tends to reduce the Alpha-band to prepare for motor actions. On the 

contrary, during motor imagery, the Beta wave is increasing [92]. This increase is called Event-Relate 

Synchronization (ERS). The ERS occurs as a response to imagining moving a part of the body [93]. Before 

the controlling of the robotic arm, the Emotive EEG signals have to be passed through several steps, 

preprocessing, Feature Extraction and classification. 

A- Preprocessing 

As mentioned before, the EEG signals contain noises and artifacts that are caused by Eye blinking, moving 

the face muscles. Using band pass filter is essential to remove all other bands and focus only on Alpha (8-

12 Hz) and Beta (13-30 Hz). As for the artifacts, the Emotive insight automatically removes them.  

 

B- Feature Extraction 

In this work, Wavelet transform, the same method in was used for feature extraction. To capture the Alpha 

and Beta band waves, 4-level decomposition of the EEG signals must be executed. The common features 

captured were as follows: 

• Energy of wavelet coefficient: the energy is extracted using the equation 

𝐸 = ∑ |𝐷𝑖|2𝑁
𝑖−1  ----(14) 

Where Di is the detailed coefficient corresponding to Level N. 

• Mean: the average of signals in the band.  

𝜇 =
1

𝑁
∑ (𝐷𝑖 − 𝜇)2𝑁

𝑖=1 -----(15) 

• Other features such as variance, skewness, kurtosis, max and min.  
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C- Classification 

This stage comes after the extractions of features of the EEG signals that accomplished in the previous step. 

For each segment of the EEG, the feature vector needs to be labeled for mental commands (i.e. Push=1, Pull=2, 

etc.) to train the classifier to detect them and use it to control the robotic arm. The main aim of this is to make 

the subject brain get used to the device and second to make the brain produce the same patterns of signals for 

a specific action. For example, the first training is for pushing. 

motor imagery, when the subject is imagining pushing an object. After several trials the brain will 

produce the same pattern of signals for such action. The Emotive software comes with experiment 

features for subject training as shown in Figure 36. From the figure we can see the subject sitting in-

front of the screen where there is a cube in the middle. 

 

                                                                Figure (36) Subject Training 

The subject has to relax and focus on the cube to perform several actions, such as Push, Pull, Lift, 

Drop, move right and move left. All the signals from the different trainings will be stored and 

preprocessed for artifact removal, feature extractions and classifications. Figure 37 shows the features 

(Energy and mean) extracted from Beta and Alpha waves for four mental commands. 
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\  

                                                    Figure (37) Mean and Energy for EEG signal  

The Arduino code uses the stored signals as a reference to convert them to commands to control the robotic 

arm. The result of this work is divided into two parts: 

 

1. Separate movement. 

2. Full pick and place movement. 

Both of the parts were executed in two conditions, the Quiet mode, where there is no extra noise in the 

environment. The second condition is where there is noise in the environment, as people talking or playing 

music next to the subject. 

1- Separate movements (Mental Command) 

Each joint in the robotic arm is connected to a servomotor. The servomotor moves in two directions. That 

means each movement needs 1 mental command. For example, mental command move right will result in 

rotating the servo 90 degrees CW. And the mental command move left will force the motor to rotate 90 

degrees CCW as shown in Figure 38 below. The movement of the Base joint was chosen for this section 

which also is shown in Figure 39 a, b, c. 
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                                                  Figure (38) Mental Command 

As it shown in Figure 39, the initial position of the robot arm was in figure b at 0 degree the figure a is moving 

right CW and figure c is rotating Left CCW. Beta waves are related with active thinking, problem solving, 

concentration, and increased attentiveness 

 
 

  

A                                                           B                                                        C 

Figure (39) Robot Arm (Base) Movement 

In an agitated environment, beta waves rise. This is a method of being attentive in the face of imagined threats 

from ambient noise. Figures 40 and 41 show the beta waves amplitude changing as Figure 40 represents the 

beta waves in a quiet environment and the low beta waves are increasing. 
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  Figure (40) Low Beta Waves in A Quiet Environment 

Figure 41 shows the High beta waves in a noisy environment a music was playing next to the subject. From 

Figure 41, high beta waves were arising as the subject was in a high focus as the noise environment affected 

the training. The same results were achieved for the Robotic arm movement. 
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Figure (41) High Beta Waves in A Noisy Environment. 

The execution accuracy is calculated regarding each joint. The number of correctly executed actions to the 

total number of actions attempted as shown in equation 16. Table 6 shows the execution accuracy for each 

joint of the robotic arm using mental commands. 

𝐸𝑥𝑒𝑐𝑢𝑠𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑥𝑐𝑢𝑡𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜 𝑜𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑒𝑚𝑝𝑡
∗ 100---------(16) 

Table (6) Execution Accuracy for Robotic Arm using HITI brain Software 

Joint Command 

Quiet Environment Noisy Environment 

Total 
Number of 

trials 

Number of 
Correctly 
Executed 

Trial 

Accuracy Total Number 
of trials 

Number of 
Correctly 
Executed 

Trial 

Accuracy 

Base 
Push (C.W) 10 10 100 10 9 90 

Pull (C.C.W) 10 10 100 10 8 80 
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Shoulder 
Lift  (Up) 10 9 90 10 9 90 

Drop  (Down) 10 10 100 10 9 90 

Elbow 
Lift  (Up) 10 9 90 10 7 70 

Drop  (Down) 10 9 90 10 7 70 

Wrist Vertical 
Right (UP) 10 10 100 10 7 70 

Left (Down) 10 10 100 10 7 70 

Wrist 
Rotational 

Left (C.W) 10 9 90 10 8 80 

Right (C.C.W) 10 10 100 10 8 80 

Manipulator 
Push (Open) 10 10 100 10 9 90 

Pull (Close) 10 10 100 10 9 90 

From the table above, some of the joints have the same mental commands that is due to the limitations of the 

Emotive software for the subscriptions this research could afford. And since the testing was for each joint 

separately, the testing can be performed with the same mental command. Figure 42 shows the difference of 

the execution accuracy in both conditions. 

 

Figure (42) Execution Accuracy (HITI Brain) 

2- Separate movement (Facial Expression). 

The BCI records the signals of the brain based on special facial actions. Every time a person winks, blinks, 

smiles or does special action in the face, the brain produces different type of signals. Moreover, since the 

servomotor rotates in two directions, each direction requires one facial action. For example, a smile will force 

the motor to rotate CW. In addition, the raised eyebrows facial action leads to rotating the motor CCW. Figure 
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43 a, b shows the facial expression. In this section, the accuracy calculated was for the command recognition 

accuracy which can be calculated using Equation 17. Table 7 shows the command recognition accuracy for 

the facial recognition. 

  
                                                          A                                                                   B 

Figure (43) Facial Expression 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜 𝑜𝑓 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑠𝑒𝑛𝑡
∗ 100-----------(17) 

 

Table (7) Command Recognition Accuracy 

Command 

Quiet Environment Noisy Environment 

Total Number 
of trials 

Number of 
Correctly 
Executed 

Trial 

Accuracy Total Number 
of trials 

Number of 
Correctly 
Executed 

Trial 

Accuracy 

Smile 10 10 100 10 9 90 

Blink 10 10 100 10 10 100 

raise 
eyebrow 10 8 80 10 9 90 

wink left 10 10 100 10 8 80 

wink right 10 10 100 10 8 80 
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clench 
teeth 10 10 100 10 9 90 

furrow 
eyebrows 10 7 70 10 7 70 

The accuracy of facial recognition (as shown in figure 44) in both conditions (Quiet and Noisy Environment) 

was high as this depends on reading the signals from the brain based on physical actions, there was no motor 

imagery in this test. Figure 45 a, b, c shows movement of the elbow joint that was chosen for this section. 

 
Figure (44) Command Recognition Accuracy (Facial Expression) 

   

                 A                                   B                                     C  

                                                               Figure (45) Elbow Movement. 

From the Figures above, Figure ‘b’ represents the zero position, Figure ‘a’ is for CCW shoulder joint and 

Figure ‘c’ shows the CW rotation of the shoulder joint. 

3- Full Pick and Place movement. 
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This is a little hard to perform since the work is limited by the actions available in the emotive software. 

The robotic arm has 6 joints and each joint moves in two directions. So, the total brain actions needed for 

the full arm are 12 actions. Therefore, in order to perform this complex movement with the limited 

resources in hands, the combinations of mental commands and facial expression were implemented in this 

section. Table 8 presents each joint with their movement and which action is connected to it. Table 9 and 

figure 46 present the execution accuracy for combined movement of different joints at the same time. It is 

crucial to mention that the test was performed in a quiet environmental condition only.  

Table (8) Joints and Brain Actions. 

Joint CW rotation CCW rotation Mental Command Facial Expression 

Base Move Right Move Left Yes No 

Shoulder Push Pull Yes No 

Elbow Lift Drop Yes No 

Wrist 

R
o

ta
tio

n
a

l 

Raise brows Furrow brows No Yes 

T
ra

n
sitio

n
a

l 

Wink left Wink Right No Yes 

Manipulator Smile (Open) 
Clench Teeth 

(Close) 
No Yes 

 

 Table (9) Execution Accuracy for Combined Joint Movement 

Joint 

Quiet Environment 

Commands 
Total Number 

of trials 

Number of Correctly 

Executed Trial 
Accuracy 

Base (CCW)-shoulder(Up)-

Elbow(Down) 
Left-Push-Drop 10 8 80 

 

Elbow(Up)-shoulder(Down)-

Base(CW) 
Lift-Pull-Right 10 8 80 
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Shoulder(Up)-Wrist 

V(Up)-Manipulator ( 

Open) 

Push-Raise 

Brows-Smile 
10 7 70 

 

 
 

 
Figure (46) Execution Accuracy for Combined Joints Movement 

Figure 47 (a-f) shows how full movement of an object is performed from one point to another 

 
                                                             a 

 
b 

 
              c 

 
d 
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            e 

 
f 

Figure (47) Pick and Place (Cont’d). 

 

4- Safety and Security. 

The system has two safety conditions in order to avoid colliding with other objects on the way and to avoid 

if the signal is too powerful that makes the joint move more than the desired motion. The first solution is 

to set the minimum and maximum interval range for the servo. This can be done in the code. The second 

solution is in the HITI brain software (Figure 48). When linking the joint movement to brain signals, there 

is an option called a threshold. This can determine the power the signal should reach before moving the 

motor. The safety of this system is very crucial to ensure smooth and safe working of the arm, as the system 

is also applicable for a prosthetic arm with 6 joints. And since the prosthetic attached to the body is 

different than the robotic arm, putting the safety conditions is required always. 

 

                                                Figure (48) HITI Software Safety Option 
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4.3. Controlling a higher degree of freedom robotic arm with few mental commands. 

 

One of the limitations in the previous sections is that the more degree of freedom for the robot the 

more mental commands are required to control it. For example, as in the previous section, 6 DOF 

robotic arm requires 12 mental command or 12 different type of brain signals. Due to that reason, the 

patient will require more training. To solve this problem, we can use four mental commands, two 

mental commands to control the movement of each joint, and two mental commands to control the 

transition between the joints. For this solution, Node-RED software was used as well as the Arduino 

software and Emotive software. 

4.3.1. Node-RED 

Node-RED is one of the flow-based programming tools. The flow programming described the 

application`s behavior as a black box network. Node-RED describes it as nodes [94]. Processing is 

defined in each node; data is given to it, processing is performed using that data, and that data is passed 

to the next node. The network plays the role of allowing data to flow between the nodes (Figure 49). 

Node-RED has the ability to combine the two-software necessary for this work (the Emotive and the 

Arduino). Node-RED basically is a programming tool for programming node.js applications with 

Graphical User Interface GUI tools [95]. 

 

                                                              Figure (49) Node-RED 

The human arm has a wide range of motion, starting at the shoulder and extending to the elbow, wrist, and 

hand [96]. Joint and muscle group contributes to arm movement, beginning with the shoulder: 

1. Shoulder Joint. 

    The shoulder is a ball-and-socket joint composed of the humerus (upper arm         

    bone) and the scapula (shoulder blade), especially the glenoid cavity [97]. 

    This joint provides a wide range of motion [98], including: 
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• Flexion involves raising the arm forward. 

• Extension: Moving the arm rearward. 

• Abduction means lifting the arm horizontally away from the body. 

• Adduction is bringing the arm back toward the body. 

• rotation: internal (inward) and exterior (outward). Rotation 

• Circumduction is the combination of the above actions that move the arm in a circular pattern. 

    Muscles Involved 

•  Deltoid: This muscle caps the shoulder and is responsible for abduction. 

•  The rotator cuff muscles (supraspinatus, infraspinatus, teres minor, and subscapularis) support the 

shoulder joint and help with numerous motions, notably rotation and abduction. 

• The Pectoralis Major and Latissimus Dorsi muscles help with arm flexion, adduction, and rotation. 

•  Trapezius and Serratus Anterior: Stabilize the scapula and facilitate shoulder mobility.  

2. Elbow joint. 

The elbow is a hinge joint that links the humerus, ulna, and radius in the forearm [99]. 

    It mainly allows: 

•  Flexion involves bending the arm. 

• Extension: straightening the arm. 

    Muscles Involved 

• Biceps Brachii: The muscle responsible for elbow flexion. 

• Triceps Brachii: The muscle responsible for elbow extension. 

 

3. Forearm Rotation. 

    This includes the proximal and distal radioulnar joints [99], which allow for: 

•  Pronation: Turning the palm downwards. 

• Supination involves turning the palm upward. 

 Pronation is controlled by the Pronator Teres and Pronator Quadratus muscles. Supination requires 

the Biceps Brachii and Supinator muscles. 

 

4. Wrist and Hand Joints. 

    The wrist and hand have multiple joints, enabling fine motor control and complex movements such as 

flexion, extension, abduction, adduction, and circumduction of the wrist, as well as grasping and 

manipulating objects with the fingers[100]. 

    Muscles Involved: 

• Flexor and Extensor Groups: These are found in the forearm and control movement at the wrist 

and fingers. 
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• Intrinsic Hand Muscles: Small muscles within the hand provide precise finger motions. 

 

The coordination of these joints and muscles allows the human arm to perform a wide range of complex 

movements, from reaching and lifting to fine motor skills like writing. The central nervous system (CNS) 

plays a crucial role in controlling these movements by sending signals to the muscles, allowing for smooth, 

coordinated actions. From all above, the idea of controlling the robotic arm with less mental command. Each 

joint requires two movements, the clockwise and the counterclockwise movement. These two can be 

controlled with two mental commands. The transition between the joints can be controlled in two mental 

commands. One command is to transfer to the next joint and one is to back to the previous joint. So, to perform 

the full pick and place, the movement starts to move the shoulder joint to the required position, followed by 

the elbow, wrists and manipulator. The Node-Red flow blocks are shown in the figure 50. There are five mental 

commands (Push, Pull) for the CW and CCW movement, (Lift, Drop) for the transition between the joints. 

Neutral for stop command. 

 
                                           Figure (50) Robot Arm Control 

Table 10 presents the execution accuracy of switch control between different joints. To evaluate the system's 

robustness, tests were performed in both quiet and noisy environments, simulating varying real-world 

conditions. The quiet environment aimed to minimize external distractions and enhance focus, while the 

noisy environment introduced auditory and visual disturbances to test the system's reliability under 

challenging conditions. These experiments aimed to assess the feasibility and accuracy of controlling a 

robotic arm with limited mental commands in diverse scenarios. 
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Table (10) Execution Accuracy of Joint Switch Control 

 

In figures 51, 52 we can observe that there is a noticeable difference of execution accuracy between the Quiet 

environment and the Noisy environment. 

Joints 
movemen

t
Command

No. of 
Trials

No. of True 
Excution

Accuracy
Joints 

movemen
t

Comman
d

No. of 
Trials

No. of 
True 

Excution
Accuracy

Base-
Shoulder

Lift 10 10 100
Base-

Shoulder
Lift 15 11 73.33333333

Base to 
Elbow

Lift 10 8 80
Base to 
Elbow

Lift 15 10 66.66666667

Base-Wrist 
Vertical

Lift 10 8 80
Base-Wrist 

Vertical
Lift 15 10 66.66666667

Base-Wrist 
Rotational

Lift 10 7 70
Base-Wrist 
Rotational

Lift 15 10 66.66666667

Base-
Manipulator

Lift 10 8 80
Base-

Manipulator
Lift 15 8 53.33333333

Joints 
movemen

t
Command

No. of 
Trials

No. of True 
Excution

Accuracy
Joints 

movemen
t

Comman
d

No. of 
Trials

No. of 
True 

Excution
Accuracy

Shoulder-
base

Drop 10 10 100
Shoulder-

base
Drop 15 10 66.66666667

Wrist 
Rotational-

shoulder
Drop 10 7 70

Wrist 
Rotational-

shoulder
Drop 15 8 53.33333333

Manipulator-
base

Drop 10 5 50
Manipulator-

base
Drop 15 8 53.33333333

Manipulator-
Wrist 

Vertical
Drop 10 7 70

Manipulator-
Wrist 

Vertical
Drop 15 9 60

Elbow-
shoulder

Drop 10 10 100
Elbow-

shoulder
Drop 15 11 73.33333333

Forward movement

Noisy Environment Backward Movement

Quiet Environment Forward movement

Quiet Environment Backward Movement

Noisy  Environment
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Figure (51) Execution Accuracy of Forward Transition Between Joints 

 

 

Figure (52) Execution Accuracy of Backward Transition between Joints 

Table 11 and figure 53 show the combined switch control between joints at the same time. In this test, we only 

performed it in a Quiet environment condition.  

      Table (11) Execution Accuracy of Combined Movement 

Joints movement 
No. of 

Trials 

No. of 

True 

Excution 

Accuracy 

Base-Shoulder-Base 20 19 95 
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Shoulder-Elbow-Base 20 17 85 

Wrist Vertical-Wrist-Rotational-

Manipulator-Base 
20 14 70 

 

 

                          Figure (53) Execution Accuracy of Combined Movement 

The more complicated the operation is the more focused and training the patient needs. It is important to 

mention that the execution of the robot arm in Pick and Place movement was applied in a quiet environment 

condition.  

 

4.4. Conclusion 

Disability problem is widespread in the last decade. Paralyzed or people with lost limbs (especially the upper 

limb) face a real challenge performing daily life activities. The aim of this research is to help them to perform 

simple daily life activities using their brain signal. The work shows great results regarding the motion control 

of the robotics arm, and at the same time the system is safe and smooth. The patient before using the system 

needs to be trained for a period of time, and this time is different from person to person depends on power of 

focus in the patient. The overall system can be applicable for prosthetics. This finding supports Hypothesis 

3: Employing a Brain-Computer Interface (BCI) for controlling a 6 Degrees of Freedom (DOF) robotic arm 

that closely replicates human arm movements facilitates more intuitive and precise robotic control. And 

Hypothesis 4: An innovative technique to control higher degrees of freedom of a robotic arm with reduced 

cognitive commands from the brain can improve usability and efficiency.  
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5. BCI control for wheeled robot 

Brain-controlled robots capture and use brain wave data to control movement. This, when combined with a 

mobile robot or wheelchair for handicapped people who cannot talk or move their hands, will allow them to 

move around independently [101]. To control the wheelchair, EEG signals are required. In this technique, the 

intention is to employ five electrodes to record EEG signals from various positions on the head. A Brain-

Computer Interface (BCI) typically operates mobility robots or electric wheelchairs via Bluetooth. A BCI 

includes three components: input (e.g., user electrophysiological activity), output (i.e., device commands), 

and operation. Electrodes on the scalp or in the skull collect brain signals and extract certain properties, such 

as evoked potential amplitudes, sensory-motor cortex rhythms, and cortical neuron firing rates, to determine 

the user's intent. These characteristics are turned into commands that control a device (such as a mobile robot, 

wheelchair, or neuro-prosthesis [102]. The success of BCI operation is dependent on the interplay of two 

adaptive controllers: the user and the system. The user must create and maintain a strong link between his or 

her purpose and the signal characteristics used by the BCI, and the BCI must choose, and extract features that 

the user can influence before appropriately and effectively translating those features into device commands. 

5.1. Material  

This section presents the resources utilized in the creation of BCI system.  The components include the 

Emotive insight headset, the development software, the communication system, and the mobile robot. The 

Emotive Insight is a multi-sensory headset including 5 electrodes and two reference sensors. It acquires the 

EEG signals from the user's brain. Initially, Emotive Insight was introduced as an innovative control 

mechanism for video game interactivity.  The mobile robot used in this work is Alphabot 2.0 (figure 54). It is 

an advanced robotic development platform designed by Waveshare. The robot is compatible with different 

types of controllers such as Arduino and Raspberry Pi. 

 

                                                          Figure (54) Alphabot 
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5.1.1. Mobile Robot. 

   A mobile robot is a software-controlled machine that uses sensors and various technologies to perceive its 

environment and navigate within it. Mobile robots operate by a synthesis of artificial intelligence (AI) and 

mechanical components, including wheels, tracks, and legs. Mobile robots are gaining prominence in several 

commercial areas [103]. They are employed to facilitate work processes and execute jobs that are infeasible or 

hazardous for human laborers. It is possible to categorize mobile robots according to two criteria: the working 

environment and the means of propulsion.  A few examples of mobile robots that can adapt to their 

surroundings are: 

• Arctic robots that can navigate rough, icy terrain. 

• Flying robots, often called drones or unmanned aerial vehicles (UAVs). 

• Robots that move about on dry land or inside homes are known as unmanned ground vehicles (UGVs).  

• Robots that can navigate themselves through water, also known as autonomous underwater vehicles 

(AUVs). 

• Transportation and delivery robots are movable machines that can convey goods and supplies from one 

location to another. 

 

   A mobile robot may be classified using many devices, such as: 

• legs, which can be either animal-like or human-like 

• wheels. 

• Tracks 

 

  In addition, autonomous mobile robots and non-autonomous mobile robots are the two most common 

varieties. When it comes to moving around, non-autonomous mobile robots need some type of instruction or 

guidance system, whereas non-autonomous mobile robots (AMRs) can navigate and discover their 

environment on their own [104]. A driving system called differential drive is used by several mobile robots. 

Each of its two wheels may be turned in the direction by itself; these wheels are positioned on a shared axis. 

Although the robot can roll by changing the velocities of its individual wheels, it can only do so by rotating 

around a point that lies along the axes of its two front wheels (Figure 55). The Instantaneous Center of 

Curvature (ICC) is the point around which the robot revolves [105]. By varying the velocity of each wheel, 

the trajectories taken by the robot can be changed accordingly. 
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                                                           Figure (55) ICC of Mobile Robot. 

5.1.2. Method of controlling the mobile robot. 

A mobile robot known as a differential wheeled robot can move about thanks to its two wheels, one 

on each side of the body, which are controlled independently. It doesn't need any extra steering motion 

because it can change its direction just by adjusting the respective speeds of its wheels [106]. To avoid 

tipping over, robots using this type of propulsion usually incorporate one or more caster wheels. The 

robot will go in a straight path if the two wheels are turned at the same speed and in the same direction. 

The robot will spin around its axis if its two wheels are moved in opposing directions at the same 

speed. The point where the tires make contact is not always the center of rotation; rather, it can fall 

anywhere along that line, depending on the direction and speed of rotation. Even though the robot is 

moving in a straight path, the distance to the center of rotation is unlimited [107]. Accurate sensing 

and control of the speed and direction of rotation of the two driven wheels is crucial for the robot's 

direction. In this work, the Arduino controller is used to control Alphabot 2.0. With the combination 

of Node-Red, Arduino IDE and Emotive software, the control of Alphabot was achieved. Based on 

mental commands (Push, Pull, Right, Left, Neutral) the robot was moved (Forward, Backward, turn 

right, Turn Left, Stop) respectively.  The Emotive Software sends the mental commands to Node-Red 

which acts as a medium that transfer the signals to the Arduino controller, and according to the code 

in the controller the movement of the mobile robot is executed. Figure (56) shows the flow diagram in 

Node-RED.  
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                                            Figure (56) Node-RED Flow for Mobile Robot Control 

5.2. Results 

The simplest way to make the mobile robot reach the goal point is to guide it. There are various methods to 

achieve that. In this work, the guidance using mental commands was used (Figure 57). The robot has to move 

between two points. The start point (A) and the end point (B). As in the previous chapter, the mobile robot 

was given instructions with brain signals to move in different directions. Figure 58 a, b, c, d shows how the 

mobile robot moves between points A and B. The subject sits in a relaxed state focusing on the robot 

movement. Five commands were used (Push= Forward, Pull = Backward, Left = Turn Left, Right = Turn  

Right, Neutral = Stop). It’s important to mention that the subject had a training for 5 sessions and 40 trials, 

before testing. 
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                                                   Figure (57) Controlling Mobile Robot using BCI 

    
               A                                      B                                                       C                                                 D 

                                          Figure (58) Mental Commands Robot Controlling 

The Execution accuracy was calculated as the same as the robotic arm. The ratio of the number of correctly 

executed actions to the total number of actions attempted. Table 12 and figure 59 present the results of the 

accuracy of the systems in the two conditions, the Quiet and noisy environment. 

Table (12) Execution Accuracy of Mobile Robot  
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Figure (59) Execution Accuracy of Mobile Robot 

The results for the mobile robot were higher than in robotic arm as the robot doesn`t have complex 

movements as the arm. 

 

 

Command
No. of 
trials

No. of corrected 
executed

Accura
cy

Command No. of trials
No. of 

corrected 
executed

Accuracy

Forward - Right 10 10 100 Forward - Right 10 8 80
Forward - Left 10 10 100 Forward - Left 10 8 80

Backward- Right 10 9 90 Backward- Right 10 7 70
Backward-Left 10 10 100 Backward-Left 10 8 80

Full Move 10 8 80 Full Move 10 7 70

Quiet Environment Noisy Environment
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5.3. Conclusion 

The Emotive Insight BCI, Arduino, and Node-RED were successfully integrated to drive a mobile robot, 

demonstrating the possibility and usefulness of employing EEG-based brain signals for real-time robotic 

control. This technique demonstrates BCI technology's ability to provide intuitive and direct control of 

robotic devices in the absence of conventional interfaces. By mapping mental instructions to robot motions 

using Node-RED, I was able to obtain responsive and accurate control, demonstrating the utility of non-

invasive EEG for mobile robotic applications. This experiment also lays the path for future advancements in 

BCI-controlled robots, with potential applications in assistive technology and beyond. This work supports  

Hypothesis 5: Using Brain-Computer Interface (BCI) technology with a fewer number of recording channels 

for the controlling of mobile robots will facilitate efficient and effective robotic control. Optimizing signal 

collection and processing with fewer channels enables accurate command execution while decreasing the 

complexity of the BCI system. 
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6. CONCLUSION 

The use of EEG signals from the brain to operate robotic systems, including robotic arms and mobile robots, 

represents a significant progression in assistive technology and brain-computer interface (BCI) applications. 

The statistics of Hungary, indicating that around 10% of the population is listed as handicapped, emphasize 

the social significance of this study. Assistive technology, such as robotic arms and mobile robots, operated 

using non-invasive EEG impulses, may provide significant answers to the issues encountered by this 

demographic. Prosthetic robotic arms operated by brainwaves might restore functionality and enhance 

autonomy for persons with motor disabilities, while brain-controlled mobile robots could facilitate movement 

and everyday activities, providing more freedom and dignity. The incorporation of EEG-controlled robotic 

systems signifies a crucial advancement in assistive technology for those with impairments. The results not 

only fulfill a significant social need, as shown by Hungary's disability statistics, but also facilitate worldwide 

progress in human-robot interaction. Through ongoing innovation in this domain, researchers and engineers 

may foster a more inclusive society, wherein technology enables people to surmount physical constraints and 

attain more autonomy in their lives. 
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7. New Scientific Results 

 

The following theses encapsulate the essence and significance of my scientific research conducted 

during my Ph.D. studies: 

Thesis No. 1 

I have demonstrated the practicality, safety, and applicability of non-invasive BCIs in real-world robotic 

applications, with a particular emphasis on assistive technologies for the disabled users. (Chapter 9/9.1 

[3],[5], [??]) 

Discussion 

The following important elements are emphasized in my statement: 

1.  Real-World Applications: Non-invasive BCIs are more practicable and easier to use, making them 

more suitable for deployment in practical, everyday contexts. This is consistent with the requirements 

of incapacitated users, who need systems that are both user-friendly and dependable . 

2. Safety Benefits: Non-invasive BCIs mitigate the health risks and complications that are linked to 

invasive and semi-invasive technologies, such as long-term maintenance, infection risks, and surgical 

procedures. This renders them a more acceptable and secure option for a broad user base, particularly 

for assistive purposes . 

3. Emphasize Disabled Users: The objective is to establish systems that prioritize safety, comfort, and 

simplicity of adoption for individuals with disabilities. These criteria are more effectively met by non-

invasive BCIs than by their invasive counterparts . 

4. Adoption and Accessibility: Non-invasive BCIs are more likely to be widely adopted due to the fact that 

they do not necessitate specialized expertise for setup and maintenance or complex medical procedures. 

This renders them more suitable for mass-market assistive devices . 

I reaffirm the thesis that non-invasive BCIs are not only technologically viable but also ethically and 

socially preferable options for assistive robotic systems 

Thesis No. 2 

I have proven the effectiveness of combining advanced feature extraction techniques with robust 

classification methods in EEG data analysis, specifically for applications in BCI-controlled robotic 

systems (Chapter 9/ 9.1 [1], [3]). 

Discussion: 

The following is illustrated by my statement : 
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1. Wavelet Transforms for Feature Extraction: I have demonstrated that wavelet transforms are highly 

effective in the extraction of meaningful and relevant features from EEG signals. This is of particular 

significance due to the fact that EEG data are frequently complex and chaotic, necessitating sophisticated 

preprocessing methods to enhance the signal-to-noise ratio and emphasize patterns during classification. 

2. ANFIS for Classification: I demonstrated that the accuracy of EEG data analysis is considerably improved 

by employing the Adaptive Neuro-Fuzzy Inference System (ANFIS) as a classification method. This 

implies that ANFIS is an exceptional candidate for the classification of mental commands from EEG 

signals, as it is well-suited for the interpretation of nonlinear and equivocal data. 

3. Supervised Machine Learning Applicability: The fact that supervised machine learning algorithms can 

similarly improve classification accuracy demonstrates that a variety of advanced methods, in addition to 

ANFIS, can be effectively employed for the classification of EEG signals. This broadens the scope of my 

findings, demonstrating that the results are not constrained to a single approach but rather to a general 

framework that integrates sophisticated classifiers and feature extraction. 

4. Improved Accuracy: Your research demonstrates that the integration of sophisticated preprocessing 

(wavelet transformations) with potent classifiers (e.g., ANFIS or supervised machine learning algorithms 

like SVM and neural networks) leads to a substantial increase in classification accuracy. This 

enhancement is essential for real-world applications that require precision and reliability in the 

interpretation of EEG signals. 

 

 

Thesis No. 3: 

I have demonstrated the practicality and efficacy of employing Brain-Computer Interfaces (BCIs) to 

attain intuitive and precise control of intricate robotic systems, specifically a six-degrees-of-freedom 

(DOF) robotic arm (Chapter 9/9.1 [2], [6]. 

 

Discussion: 

The following important elements are emphasized in the statement: 

 

1. Human Arm Movement Replication: Your demonstration of the ability of BCIs to reconcile the divide 

between human intention and robotic execution was achieved through the use of a 6-DOF robotic arm 

that closely resembles human arm movements. This results in a more intuitive and natural control of the 

robotic limb for the user. 

 

2. Intuitive Control: The capacity to operate a robotic arm through mental commands enables users to 

operate it without the need for extensive physical interfaces or manual inputs. The interaction is 

simplified, and cognitive and physical distress are reduced, which is particularly beneficial for users with 

disabilities . 
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3. Robotic Control Precision: The robotic arm's high degree of accuracy demonstrates that BCIs are capable 

of translating mental commands into precise, fine-grained movements. This is essential for applications 

that necessitate delicate or coordinated duties, such as industrial automation, prosthetics, or assistive 

devices . 

 

4. Developing BCI Applications: Your research underscores the potential of BCIs to evolve from basic 

robotic duties to more complex systems with greater degrees of freedom. You contribute to the body of 

evidence that supports the scalability and versatility of BCIs in robotics by demonstrating successful 

control of a 6 DOF robotic arm . 

 

5. Practical Significance: The emphasis on intuitive and precision control demonstrates the practical 

applicability of this technology in real-world scenarios, particularly in assistive technologies for 

individuals with motor impairments or in environments that necessitate seamless human-robot 

interaction. 

 

Thesis No. 4: 

By using a simple approach, I demonstrated a new method to control a higher degree of freedom robotic 

arm with only four commands. Instead of assigning two mental commands to every joint in the robotic 

arm which leads (which leads to the fact that the higher DOF the more double Number mental commands 

required) only four mental commands used. With this method (Chapter 9/ 9.1 [8]). 

 

Discussions: 

 I demonstrated that: 

1- Complex tasks can be managed by fewer mental commands. 

2- This method could be applicable for different fields, like assistive devices.  

3- The reduction in cognitive loads highlights the potential for reducing mental fatigue. 

 

Thesis No. 5: 

I endorsed a statement emphasizing the prospective advantages of using Brain-Computer Interface (BCI) 

technology for the control of mobile robots. The assertion indicates that BCI may improve the efficiency 

and efficacy of robotic control by enabling direct brain inputs that control robot motions and commands. 

This integration may enhance accessibility and engagement with robots, particularly for those with 

physical disabilities (Chapter 9/9.1 [8]). 
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8. Future Work and Outlook 

Following the successful deployment of Brain-Computer Interfaces (BCIs) for the control of a 6 Degrees 

of Freedom (DOF) robotic arm, several avenues for future study may be delineated to improve the 

application, usefulness, and efficiency of this technology. 

Below is the list of possible developments to work on in the future: 

1. Increasing Degrees of Freedom and Complexity  

Future research may concentrate on enhancing control capabilities for robotic systems with more degrees 

of freedom or supplementary functionality, such as robotic hands exhibiting finger-level dexterity. This 

would enhance the system's capability to emulate the whole spectrum of human arm and hand motions, 

hence making it more appropriate for intricate motor tasks and sophisticated assistive applications. 

2.  Multimodal Interfaces: 

Integrating BCIs with other control modalities, such as vocal commands, ocular tracking, or tactile sensors, 

may provide hybrid control systems. These systems would provide redundant control alternatives, 

enhancing their robustness and user-friendliness in complicated or high-stress situations. 

3. Minimizing Reliance on Training. 

Although existing BCI systems often need extensive user training, future endeavors may aim to diminish 

this need by creating more sophisticated classifiers or integrating transfer learning methodologies. This 

would improve the technology's accessibility for a wider array of users. 

4. A generalization Among Users: 

Creating systems that function efficiently for a varied array of users, irrespective of individual disparities 

in brain signal patterns, is a significant focus for future study. This may include developing adaptive brain-

computer interfaces that can learn and adapt to individual users in real-time. 
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